Sistemas nanoestruturados condutores baseados em nanocompósitos poliméricos condutores e mantas eletrofiadas condutoras

Detalhes bibliográficos
Autor(a) principal: Silva, Aline Bruna da
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/710
Resumo: In this work its was investigated the influence of the processing on the electrical and dielectric properties of nanostructured polymeric systems obtained by differents techniques. The morphology and structure of the materials were correlated to their percolation threshold by applying the percolation theory. The systems studied were: i) conductive blends of poly(vinylidene fluoride) (PVDF) with polypyrrole (PPy), PVDF/ multiwall carbon nanotube (MWCNT) composites and PVDF/PPy/MWCNT hybrid systems, produced by melt mixing; ii) PVDF/ copper nanowires (CuNW) and MWCNT/PVDF nanocomposites produced by miscible solvent mixing and precipitation methods (MSMP); iii) nanofibers of nanocomposites of PA6/MWCNT, PVDF/MWCNT and PVDF/CuNW and from blends of PA6/ poly(aniline) (PAni) doped with p-toluene sulfonic acid (TSA), by electrospinning. For the systems produced by melt mixing the percolation thresholds were 10 and 0.3 wt %, for PVDF/PPy and PVDF/MWCNT, respectively, while the hybrid systems showed lower percolation thresholds and much higher electrical conductivities at all concentrations than the binary systems. For the systems produced by MSMP method the percolation thresholds were 0.13 and 0.29 v%, for the MWCNT/PVDF and CuNW/PVDF nanocomposites, respectively. It was observed also that the CuNW/PVDF nanocomposites had the highest real permittivity combined with a low dissipation factor (tan ). The non woven mats obtained by electrospinning presented insulating behavior. However, to take advantage of the high surface area and porosity of the mats the surface of the nanofibers were recovered with MWCNT by dipping the mats in an aqueous solution with MWCNT. A strong interaction between the MWNTs and the nanofibers was observed: even after ultrasonication, the adsorbed MWCNT remained attached to the surface of the nanofibers´ mats. After the treatment the mats displayed conductivities between 10-5 and 10-2 S/m.
id SCAR_dcc7daf0d07a02f0aef8a410fba2a9bd
oai_identifier_str oai:repositorio.ufscar.br:ufscar/710
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Silva, Aline Bruna daBretas, Rosario Elida Sumanhttp://lattes.cnpq.br/2805349172281345http://lattes.cnpq.br/6539169612758835f40efe57-bff7-4d52-8a5c-f7c52282fe742016-06-02T19:10:18Z2013-09-202016-06-02T19:10:18Z2013-05-10SILVA, Aline Bruna da. Nanostructured polymeric systems based on conductive nanocomposites and conductive electrospun mats. 2013. 261 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2013.https://repositorio.ufscar.br/handle/ufscar/710In this work its was investigated the influence of the processing on the electrical and dielectric properties of nanostructured polymeric systems obtained by differents techniques. The morphology and structure of the materials were correlated to their percolation threshold by applying the percolation theory. The systems studied were: i) conductive blends of poly(vinylidene fluoride) (PVDF) with polypyrrole (PPy), PVDF/ multiwall carbon nanotube (MWCNT) composites and PVDF/PPy/MWCNT hybrid systems, produced by melt mixing; ii) PVDF/ copper nanowires (CuNW) and MWCNT/PVDF nanocomposites produced by miscible solvent mixing and precipitation methods (MSMP); iii) nanofibers of nanocomposites of PA6/MWCNT, PVDF/MWCNT and PVDF/CuNW and from blends of PA6/ poly(aniline) (PAni) doped with p-toluene sulfonic acid (TSA), by electrospinning. For the systems produced by melt mixing the percolation thresholds were 10 and 0.3 wt %, for PVDF/PPy and PVDF/MWCNT, respectively, while the hybrid systems showed lower percolation thresholds and much higher electrical conductivities at all concentrations than the binary systems. For the systems produced by MSMP method the percolation thresholds were 0.13 and 0.29 v%, for the MWCNT/PVDF and CuNW/PVDF nanocomposites, respectively. It was observed also that the CuNW/PVDF nanocomposites had the highest real permittivity combined with a low dissipation factor (tan ). The non woven mats obtained by electrospinning presented insulating behavior. However, to take advantage of the high surface area and porosity of the mats the surface of the nanofibers were recovered with MWCNT by dipping the mats in an aqueous solution with MWCNT. A strong interaction between the MWNTs and the nanofibers was observed: even after ultrasonication, the adsorbed MWCNT remained attached to the surface of the nanofibers´ mats. After the treatment the mats displayed conductivities between 10-5 and 10-2 S/m.Neste trabalho foi investigada a influência do processamento nas propriedades elétricas e dielétricas de sistemas poliméricos nanoestruturados obtidos por diferentes técnicas. As morfologias e estruturas dos materiais produzidos foram correlacionadas à percolação elétrica dos mesmos, utilizando a teoria de percolação. Os sistemas estudados foram: i) Blendas de poli(fluoreto de vinilideno) (PVDF) e polipirrol (PPy), nanocompósitos de PVDF com nanotubos de carbono de paredes múltiplas (MWCNT) e do híbrido PVDF/PPy/MWCNT, todos obtidos a partir do estado fundido; ii) Nanocompósitos de PVDF com nanofibras de cobre (CuNW) e nanocompósitos de PVDF/MWCNT, obtidos pelo método de solubilização e posterior precipitação; iii) Nanofibras de nanocompósitos de Poliamida 6 (PA6) com MWCNT, PVDF/MWCNT, PVDF/CuNW e a partir da blenda de PA6/PAni, dopada com o ácido p-tolueno sulfônico (p-TSA), todas obtidas por eletrofiação. Para os compósitos PVDF/PPy e PVDF/MWCNT, produzidos a partir da mistura no estado fundido, o valor de percolação obtido foi de 10%m (ou 16,5 %vol) e 0,3 %m (ou 0,29 %vol), respectivamente. Enquanto, para o híbrido PVDF/PPy/MWCNT o valor de percolação elétrica para as cargas, individualmente, foi menor, e a condutividade elétrica obtida foi maior, comparado ao sistema binário. Para nanocompósitos PVDF/MWCNT e PVDF/CuNW, obtidos por solubilização e precipitação, o valor de percolação foi de 0,14%m (ou 0,13 % vol) e 1,36 %m (ou 0,27 % vol), respectivamente. E os nanocompósitos PVDF/CuNW apresentaram elevada permissividade elétrica combinada com baixos valores de dissipação elétrica, tan . Os resultados para condutividade elétrica das mantas não tecidas, obtidas por eletrofiação, mostraram que as mesmas têm comportamento isolante. Contudo, aproveitando as características singulares das mantas eletrofiadas (elevada área superficial e porosidade), foi realizado um tratamento para recobrir a superfície das nanofibras com MWCNT, mergulhando as mantas em uma dispersão aquosa de MWCNT. Foi observada uma forte interação entre os MWCNT e as nanofibras; mesmo com a utilização de intensa ultrasonicação os MWCNT continuaram bem aderidos a superfície das nanofibras. As mantas submetidas ao tratamento apresentaram condutividade elétrica entre 10-5 e 10-2 S/m.Financiadora de Estudos e Projetosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEMUFSCarBRPolímerosNanocompósitosCondutividade elétricaEletrofiaçãoENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICASistemas nanoestruturados condutores baseados em nanocompósitos poliméricos condutores e mantas eletrofiadas condutorasNanostructured polymeric systems based on conductive nanocomposites and conductive electrospun matsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-1-1e983e14c-124c-422a-a96e-24e26346a86binfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL5427.pdfapplication/pdf36473708https://repositorio.ufscar.br/bitstream/ufscar/710/1/5427.pdf2eb5c1217fdc17b27dab041fc104ec3cMD51TEXT5427.pdf.txt5427.pdf.txtExtracted texttext/plain0https://repositorio.ufscar.br/bitstream/ufscar/710/2/5427.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD52THUMBNAIL5427.pdf.jpg5427.pdf.jpgIM Thumbnailimage/jpeg7317https://repositorio.ufscar.br/bitstream/ufscar/710/3/5427.pdf.jpg28da1e4fb0110809c25eb93bf6a9eba5MD53ufscar/7102023-09-18 18:31:54.691oai:repositorio.ufscar.br:ufscar/710Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:54Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Sistemas nanoestruturados condutores baseados em nanocompósitos poliméricos condutores e mantas eletrofiadas condutoras
dc.title.alternative.eng.fl_str_mv Nanostructured polymeric systems based on conductive nanocomposites and conductive electrospun mats
title Sistemas nanoestruturados condutores baseados em nanocompósitos poliméricos condutores e mantas eletrofiadas condutoras
spellingShingle Sistemas nanoestruturados condutores baseados em nanocompósitos poliméricos condutores e mantas eletrofiadas condutoras
Silva, Aline Bruna da
Polímeros
Nanocompósitos
Condutividade elétrica
Eletrofiação
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
title_short Sistemas nanoestruturados condutores baseados em nanocompósitos poliméricos condutores e mantas eletrofiadas condutoras
title_full Sistemas nanoestruturados condutores baseados em nanocompósitos poliméricos condutores e mantas eletrofiadas condutoras
title_fullStr Sistemas nanoestruturados condutores baseados em nanocompósitos poliméricos condutores e mantas eletrofiadas condutoras
title_full_unstemmed Sistemas nanoestruturados condutores baseados em nanocompósitos poliméricos condutores e mantas eletrofiadas condutoras
title_sort Sistemas nanoestruturados condutores baseados em nanocompósitos poliméricos condutores e mantas eletrofiadas condutoras
author Silva, Aline Bruna da
author_facet Silva, Aline Bruna da
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/6539169612758835
dc.contributor.author.fl_str_mv Silva, Aline Bruna da
dc.contributor.advisor1.fl_str_mv Bretas, Rosario Elida Suman
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2805349172281345
dc.contributor.authorID.fl_str_mv f40efe57-bff7-4d52-8a5c-f7c52282fe74
contributor_str_mv Bretas, Rosario Elida Suman
dc.subject.por.fl_str_mv Polímeros
Nanocompósitos
Condutividade elétrica
Eletrofiação
topic Polímeros
Nanocompósitos
Condutividade elétrica
Eletrofiação
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
description In this work its was investigated the influence of the processing on the electrical and dielectric properties of nanostructured polymeric systems obtained by differents techniques. The morphology and structure of the materials were correlated to their percolation threshold by applying the percolation theory. The systems studied were: i) conductive blends of poly(vinylidene fluoride) (PVDF) with polypyrrole (PPy), PVDF/ multiwall carbon nanotube (MWCNT) composites and PVDF/PPy/MWCNT hybrid systems, produced by melt mixing; ii) PVDF/ copper nanowires (CuNW) and MWCNT/PVDF nanocomposites produced by miscible solvent mixing and precipitation methods (MSMP); iii) nanofibers of nanocomposites of PA6/MWCNT, PVDF/MWCNT and PVDF/CuNW and from blends of PA6/ poly(aniline) (PAni) doped with p-toluene sulfonic acid (TSA), by electrospinning. For the systems produced by melt mixing the percolation thresholds were 10 and 0.3 wt %, for PVDF/PPy and PVDF/MWCNT, respectively, while the hybrid systems showed lower percolation thresholds and much higher electrical conductivities at all concentrations than the binary systems. For the systems produced by MSMP method the percolation thresholds were 0.13 and 0.29 v%, for the MWCNT/PVDF and CuNW/PVDF nanocomposites, respectively. It was observed also that the CuNW/PVDF nanocomposites had the highest real permittivity combined with a low dissipation factor (tan ). The non woven mats obtained by electrospinning presented insulating behavior. However, to take advantage of the high surface area and porosity of the mats the surface of the nanofibers were recovered with MWCNT by dipping the mats in an aqueous solution with MWCNT. A strong interaction between the MWNTs and the nanofibers was observed: even after ultrasonication, the adsorbed MWCNT remained attached to the surface of the nanofibers´ mats. After the treatment the mats displayed conductivities between 10-5 and 10-2 S/m.
publishDate 2013
dc.date.available.fl_str_mv 2013-09-20
2016-06-02T19:10:18Z
dc.date.issued.fl_str_mv 2013-05-10
dc.date.accessioned.fl_str_mv 2016-06-02T19:10:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Aline Bruna da. Nanostructured polymeric systems based on conductive nanocomposites and conductive electrospun mats. 2013. 261 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2013.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/710
identifier_str_mv SILVA, Aline Bruna da. Nanostructured polymeric systems based on conductive nanocomposites and conductive electrospun mats. 2013. 261 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2013.
url https://repositorio.ufscar.br/handle/ufscar/710
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv -1
-1
dc.relation.authority.fl_str_mv e983e14c-124c-422a-a96e-24e26346a86b
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/710/1/5427.pdf
https://repositorio.ufscar.br/bitstream/ufscar/710/2/5427.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/710/3/5427.pdf.jpg
bitstream.checksum.fl_str_mv 2eb5c1217fdc17b27dab041fc104ec3c
d41d8cd98f00b204e9800998ecf8427e
28da1e4fb0110809c25eb93bf6a9eba5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136246492856320