Optimization models and solution methods for the vehicle allocation problem

Detalhes bibliográficos
Autor(a) principal: Alvarez Cruz, Cesar Dario
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/15387
Resumo: The Vehicle Allocation Problem (VAP) consists in allocating a fleet of vehicles to attend the expected demand for road freight transportation between terminals along a finite multiperiod planning horizon. The objective is to maximize the profits generated for the completed services. Previous deterministic and stochastic approaches used heuristic procedures and approximation methods for solving large scale instances of this problem. This thesis contributes with models and solution methods for solving effectively large-scale instances of the VAP. The first method is Branch-and-Benders-Cut (BBC) for solving the space-time network formulation of the VAP. The Benders reformulation results in each subproblem being a multiple origin-destination minimum cost flow problem among empty vehicles exclusively. We propose two valid inequalities in order to reduce the number of infeasible cuts needed to reach a feasible and optimal solution. In addition, we use network flow algorithms in trying to accelerate the process of cut generation. Computational results are shown for randomly generated instances. The second method is a tailored exact Branch-and-Price (BP) procedure, that provides optimal solutions or certificates of quality, for solving large-scale problems within reasonable computational times. This method is the result of reformulating a compact Integer Linear Programming model of the VAP through the Dantzig-Wolfe (DW) decomposition and using efficient procedures for solving each component of the reformulation. The Primal Dual Column Generation Method (PDCGM) is used to solve the master problem, while the subproblem is modeled as a Maximum Cost Flow Problem and solved using the aggregation of optimal longest paths problems on Directed Acyclic Graphs (DAG). Finally, we resort to three branching procedures to obtain the optimal integer solution of the VAP. Computational experiments with instances from a case study and random realistic-sized instances are presented and analyzed, showing that the method has a superior performance with respect to other exact approaches in solving large-scale VAP instances. The third method is based on preprocessing the time-space extended graph and reformulating the problem in terms of routing empty vehicles along demand nodes. The resulting model's size depends on the number of demand nodes (arcs in the previous model) and fleet size, which can be advantageous when the number of terminal-period pairs in the time-space extended network is large compared to the actual number of loads requested. We propose a BP method based on the DW reformulation of this new modelling approach. The results of both, the reformulation solved by CPLEX and the BP, shows the superior performance of this new approach in solving realistic-sized instances of the VAP.
id SCAR_e5050be9915dce6cbc95b68bf1006d6c
oai_identifier_str oai:repositorio.ufscar.br:ufscar/15387
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Alvarez Cruz, Cesar DarioMorabito Neto, Reinaldohttp://lattes.cnpq.br/4194801952934254Munari Junior, Pedro Augustohttp://lattes.cnpq.br/1328868140869976http://lattes.cnpq.br/449831631460606774a10007-1b64-48aa-ba18-b6a4f6f0adb02021-12-20T15:13:33Z2021-12-20T15:13:33Z2021-10-21ALVAREZ CRUZ, Cesar Dario. Optimization models and solution methods for the vehicle allocation problem. 2021. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15387.https://repositorio.ufscar.br/handle/ufscar/15387The Vehicle Allocation Problem (VAP) consists in allocating a fleet of vehicles to attend the expected demand for road freight transportation between terminals along a finite multiperiod planning horizon. The objective is to maximize the profits generated for the completed services. Previous deterministic and stochastic approaches used heuristic procedures and approximation methods for solving large scale instances of this problem. This thesis contributes with models and solution methods for solving effectively large-scale instances of the VAP. The first method is Branch-and-Benders-Cut (BBC) for solving the space-time network formulation of the VAP. The Benders reformulation results in each subproblem being a multiple origin-destination minimum cost flow problem among empty vehicles exclusively. We propose two valid inequalities in order to reduce the number of infeasible cuts needed to reach a feasible and optimal solution. In addition, we use network flow algorithms in trying to accelerate the process of cut generation. Computational results are shown for randomly generated instances. The second method is a tailored exact Branch-and-Price (BP) procedure, that provides optimal solutions or certificates of quality, for solving large-scale problems within reasonable computational times. This method is the result of reformulating a compact Integer Linear Programming model of the VAP through the Dantzig-Wolfe (DW) decomposition and using efficient procedures for solving each component of the reformulation. The Primal Dual Column Generation Method (PDCGM) is used to solve the master problem, while the subproblem is modeled as a Maximum Cost Flow Problem and solved using the aggregation of optimal longest paths problems on Directed Acyclic Graphs (DAG). Finally, we resort to three branching procedures to obtain the optimal integer solution of the VAP. Computational experiments with instances from a case study and random realistic-sized instances are presented and analyzed, showing that the method has a superior performance with respect to other exact approaches in solving large-scale VAP instances. The third method is based on preprocessing the time-space extended graph and reformulating the problem in terms of routing empty vehicles along demand nodes. The resulting model's size depends on the number of demand nodes (arcs in the previous model) and fleet size, which can be advantageous when the number of terminal-period pairs in the time-space extended network is large compared to the actual number of loads requested. We propose a BP method based on the DW reformulation of this new modelling approach. The results of both, the reformulation solved by CPLEX and the BP, shows the superior performance of this new approach in solving realistic-sized instances of the VAP.O Problema de Alocação de Veículos (VAP) consiste em alocar uma frota de veículos para atender a demanda por serviços de transporte de carga entre terminais ao longo de um horário de planejamento. O objetivo é maximizar os lucros gerados pelos serviços completados. Prévias abordagens determinísticas e estocásticas utilizaram procedimentos heurísticos e de aproximação para resolver instâncias de grande porte para o problema. Esta tese contribui com modelos e métodos de solução exatos para resolver efetivamente instâncias do VAP de grande porte. O primeiro método é um algoritmo Branch-and-Benders-Cut para resolver a formulação baseada na rede de espaço-tempo do VAP. A reformulação de Benders resulta num subproblema com estrutura de Problema de Fluxo de Custo Mínimo para cada tipo de veículos onde o fluxo é constituído por veículos vazios exclusivamente. Nos propomos duas desigualdades válidas para tentar reduzir o número de cortes de factibilidade e otimalidade necessários para atingir a solução  ótima. Adicionalmente, utilizamos algoritmos de fluxo em redes para acelerar o processo de geração de cortes. Experimentos computacionais são mostrados para instâncias geradas aleatoriamente. O segundo método é um algoritmo exato do tipo Branch-and-Price (BP), o qual proporciona soluções ótimas ou certificados de qualidade para resolver problemas de grande porte em tempos computacionais razoáveis. Este método é o resultado de reformular o modelo compacto de Programação Linear Inteira do VAP por meio da reformulação Dantzig-Wolfe e utilizar procedimentos e cientes para tratar cada componente da reformulação. O Método de Geração de Colunas Primal-Dual (PDCGM) é usado para resolver o problema mestre, enquanto o subproblema é modelado como um Problema de Fluxo de Custo Máximo é resolvido via agregação de soluções  ótimas de caminhos máximos em Grafos Acıclicos Direcionados (DAG). Finalmente, propomos três procedimentos de rami cacao para obter a solução ótima inteira do VAP. Experimentos computacionais com instâncias de um estudo de caso e instâncias aleatórias de tamanho realista são apresentadas e analisadas, o qual mostra a superioridade do método proposto quando comparado com outros métodos exatos para resolver instâncias de grande porte do VAP. O terceiro método está baseado em pré-processar o grafo de espaço-tempo e reformular o problema em termos de quantos veículos vazios rotear entre os nós de demanda (arcos no modelo prévio). O tamanho do modelo resultante depende do número de nós de demanda e o tamanho da frota, o qual pode ser vantajoso quando o número de pares terminal-perıodos na rede de espaço-tempo é grande comparado com o número de arcos de demanda. Nós propomos um método BP baseado na reformulação Dantzig-Wolfe deste novo modelo. Os resultados de ambas, a reformulação resolvida com um solver de propósito geral e o BP, mostram a superioridade desta nova abordagem para resolver instˆancias de tamanho realista para o VAP.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 141300/2017-5engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia de Produção - PPGEPUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessProblema de Alocação de VeıculosDecomposição de BendersDecomposição de Dantzig-WolfeGeração de colunasTransporte rodoviário de cargaLogísticaVehicle Allocation ProblemDantzig-Wolfe decompositionBenders DecompositionColumn generationLogisticsRoad freight transportationENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONALOptimization models and solution methods for the vehicle allocation problemModelos e métodos de otimização para o problema de alocação de veículosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600ab73fe2d-ae49-4b7d-915b-b256b3c2d946reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALThesis_Cesar_VF_Repositorio.pdfThesis_Cesar_VF_Repositorio.pdfapplication/pdf8978055https://repositorio.ufscar.br/bitstream/ufscar/15387/3/Thesis_Cesar_VF_Repositorio.pdf12a0113cbef0edc2c85ba1330559c051MD53carta_aprovacao.pdfcarta_aprovacao.pdfCarta de aprovacaoapplication/pdf679751https://repositorio.ufscar.br/bitstream/ufscar/15387/4/carta_aprovacao.pdf2c1b59eaade25e1793fd372f33b26c8dMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/15387/5/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD55TEXTThesis_Cesar_VF_Repositorio.pdf.txtThesis_Cesar_VF_Repositorio.pdf.txtExtracted texttext/plain350526https://repositorio.ufscar.br/bitstream/ufscar/15387/6/Thesis_Cesar_VF_Repositorio.pdf.txt5a87ce025636843de3848aae23e8410dMD56carta_aprovacao.pdf.txtcarta_aprovacao.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstream/ufscar/15387/8/carta_aprovacao.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD58THUMBNAILThesis_Cesar_VF_Repositorio.pdf.jpgThesis_Cesar_VF_Repositorio.pdf.jpgIM Thumbnailimage/jpeg5898https://repositorio.ufscar.br/bitstream/ufscar/15387/7/Thesis_Cesar_VF_Repositorio.pdf.jpg11c6fa7a5a58fb99d5cd18e503a353a5MD57carta_aprovacao.pdf.jpgcarta_aprovacao.pdf.jpgIM Thumbnailimage/jpeg11068https://repositorio.ufscar.br/bitstream/ufscar/15387/9/carta_aprovacao.pdf.jpg4ff925d26ad1ec3eeddf88a0fb07f351MD59ufscar/153872023-09-18 18:32:28.249oai:repositorio.ufscar.br:ufscar/15387Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:28Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Optimization models and solution methods for the vehicle allocation problem
dc.title.alternative.por.fl_str_mv Modelos e métodos de otimização para o problema de alocação de veículos
title Optimization models and solution methods for the vehicle allocation problem
spellingShingle Optimization models and solution methods for the vehicle allocation problem
Alvarez Cruz, Cesar Dario
Problema de Alocação de Veıculos
Decomposição de Benders
Decomposição de Dantzig-Wolfe
Geração de colunas
Transporte rodoviário de carga
Logística
Vehicle Allocation Problem
Dantzig-Wolfe decomposition
Benders Decomposition
Column generation
Logistics
Road freight transportation
ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL
title_short Optimization models and solution methods for the vehicle allocation problem
title_full Optimization models and solution methods for the vehicle allocation problem
title_fullStr Optimization models and solution methods for the vehicle allocation problem
title_full_unstemmed Optimization models and solution methods for the vehicle allocation problem
title_sort Optimization models and solution methods for the vehicle allocation problem
author Alvarez Cruz, Cesar Dario
author_facet Alvarez Cruz, Cesar Dario
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/4498316314606067
dc.contributor.author.fl_str_mv Alvarez Cruz, Cesar Dario
dc.contributor.advisor1.fl_str_mv Morabito Neto, Reinaldo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4194801952934254
dc.contributor.advisor-co1.fl_str_mv Munari Junior, Pedro Augusto
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/1328868140869976
dc.contributor.authorID.fl_str_mv 74a10007-1b64-48aa-ba18-b6a4f6f0adb0
contributor_str_mv Morabito Neto, Reinaldo
Munari Junior, Pedro Augusto
dc.subject.por.fl_str_mv Problema de Alocação de Veıculos
Decomposição de Benders
Decomposição de Dantzig-Wolfe
Geração de colunas
Transporte rodoviário de carga
Logística
topic Problema de Alocação de Veıculos
Decomposição de Benders
Decomposição de Dantzig-Wolfe
Geração de colunas
Transporte rodoviário de carga
Logística
Vehicle Allocation Problem
Dantzig-Wolfe decomposition
Benders Decomposition
Column generation
Logistics
Road freight transportation
ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL
dc.subject.eng.fl_str_mv Vehicle Allocation Problem
Dantzig-Wolfe decomposition
Benders Decomposition
Column generation
Logistics
Road freight transportation
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL
description The Vehicle Allocation Problem (VAP) consists in allocating a fleet of vehicles to attend the expected demand for road freight transportation between terminals along a finite multiperiod planning horizon. The objective is to maximize the profits generated for the completed services. Previous deterministic and stochastic approaches used heuristic procedures and approximation methods for solving large scale instances of this problem. This thesis contributes with models and solution methods for solving effectively large-scale instances of the VAP. The first method is Branch-and-Benders-Cut (BBC) for solving the space-time network formulation of the VAP. The Benders reformulation results in each subproblem being a multiple origin-destination minimum cost flow problem among empty vehicles exclusively. We propose two valid inequalities in order to reduce the number of infeasible cuts needed to reach a feasible and optimal solution. In addition, we use network flow algorithms in trying to accelerate the process of cut generation. Computational results are shown for randomly generated instances. The second method is a tailored exact Branch-and-Price (BP) procedure, that provides optimal solutions or certificates of quality, for solving large-scale problems within reasonable computational times. This method is the result of reformulating a compact Integer Linear Programming model of the VAP through the Dantzig-Wolfe (DW) decomposition and using efficient procedures for solving each component of the reformulation. The Primal Dual Column Generation Method (PDCGM) is used to solve the master problem, while the subproblem is modeled as a Maximum Cost Flow Problem and solved using the aggregation of optimal longest paths problems on Directed Acyclic Graphs (DAG). Finally, we resort to three branching procedures to obtain the optimal integer solution of the VAP. Computational experiments with instances from a case study and random realistic-sized instances are presented and analyzed, showing that the method has a superior performance with respect to other exact approaches in solving large-scale VAP instances. The third method is based on preprocessing the time-space extended graph and reformulating the problem in terms of routing empty vehicles along demand nodes. The resulting model's size depends on the number of demand nodes (arcs in the previous model) and fleet size, which can be advantageous when the number of terminal-period pairs in the time-space extended network is large compared to the actual number of loads requested. We propose a BP method based on the DW reformulation of this new modelling approach. The results of both, the reformulation solved by CPLEX and the BP, shows the superior performance of this new approach in solving realistic-sized instances of the VAP.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-12-20T15:13:33Z
dc.date.available.fl_str_mv 2021-12-20T15:13:33Z
dc.date.issued.fl_str_mv 2021-10-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALVAREZ CRUZ, Cesar Dario. Optimization models and solution methods for the vehicle allocation problem. 2021. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15387.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/15387
identifier_str_mv ALVAREZ CRUZ, Cesar Dario. Optimization models and solution methods for the vehicle allocation problem. 2021. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15387.
url https://repositorio.ufscar.br/handle/ufscar/15387
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv ab73fe2d-ae49-4b7d-915b-b256b3c2d946
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia de Produção - PPGEP
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/15387/3/Thesis_Cesar_VF_Repositorio.pdf
https://repositorio.ufscar.br/bitstream/ufscar/15387/4/carta_aprovacao.pdf
https://repositorio.ufscar.br/bitstream/ufscar/15387/5/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/15387/6/Thesis_Cesar_VF_Repositorio.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/15387/8/carta_aprovacao.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/15387/7/Thesis_Cesar_VF_Repositorio.pdf.jpg
https://repositorio.ufscar.br/bitstream/ufscar/15387/9/carta_aprovacao.pdf.jpg
bitstream.checksum.fl_str_mv 12a0113cbef0edc2c85ba1330559c051
2c1b59eaade25e1793fd372f33b26c8d
e39d27027a6cc9cb039ad269a5db8e34
5a87ce025636843de3848aae23e8410d
68b329da9893e34099c7d8ad5cb9c940
11c6fa7a5a58fb99d5cd18e503a353a5
4ff925d26ad1ec3eeddf88a0fb07f351
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715640731566080