Optimization models and solution methods for the vehicle allocation problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/15387 |
Resumo: | The Vehicle Allocation Problem (VAP) consists in allocating a fleet of vehicles to attend the expected demand for road freight transportation between terminals along a finite multiperiod planning horizon. The objective is to maximize the profits generated for the completed services. Previous deterministic and stochastic approaches used heuristic procedures and approximation methods for solving large scale instances of this problem. This thesis contributes with models and solution methods for solving effectively large-scale instances of the VAP. The first method is Branch-and-Benders-Cut (BBC) for solving the space-time network formulation of the VAP. The Benders reformulation results in each subproblem being a multiple origin-destination minimum cost flow problem among empty vehicles exclusively. We propose two valid inequalities in order to reduce the number of infeasible cuts needed to reach a feasible and optimal solution. In addition, we use network flow algorithms in trying to accelerate the process of cut generation. Computational results are shown for randomly generated instances. The second method is a tailored exact Branch-and-Price (BP) procedure, that provides optimal solutions or certificates of quality, for solving large-scale problems within reasonable computational times. This method is the result of reformulating a compact Integer Linear Programming model of the VAP through the Dantzig-Wolfe (DW) decomposition and using efficient procedures for solving each component of the reformulation. The Primal Dual Column Generation Method (PDCGM) is used to solve the master problem, while the subproblem is modeled as a Maximum Cost Flow Problem and solved using the aggregation of optimal longest paths problems on Directed Acyclic Graphs (DAG). Finally, we resort to three branching procedures to obtain the optimal integer solution of the VAP. Computational experiments with instances from a case study and random realistic-sized instances are presented and analyzed, showing that the method has a superior performance with respect to other exact approaches in solving large-scale VAP instances. The third method is based on preprocessing the time-space extended graph and reformulating the problem in terms of routing empty vehicles along demand nodes. The resulting model's size depends on the number of demand nodes (arcs in the previous model) and fleet size, which can be advantageous when the number of terminal-period pairs in the time-space extended network is large compared to the actual number of loads requested. We propose a BP method based on the DW reformulation of this new modelling approach. The results of both, the reformulation solved by CPLEX and the BP, shows the superior performance of this new approach in solving realistic-sized instances of the VAP. |
id |
SCAR_e5050be9915dce6cbc95b68bf1006d6c |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/15387 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Alvarez Cruz, Cesar DarioMorabito Neto, Reinaldohttp://lattes.cnpq.br/4194801952934254Munari Junior, Pedro Augustohttp://lattes.cnpq.br/1328868140869976http://lattes.cnpq.br/449831631460606774a10007-1b64-48aa-ba18-b6a4f6f0adb02021-12-20T15:13:33Z2021-12-20T15:13:33Z2021-10-21ALVAREZ CRUZ, Cesar Dario. Optimization models and solution methods for the vehicle allocation problem. 2021. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15387.https://repositorio.ufscar.br/handle/ufscar/15387The Vehicle Allocation Problem (VAP) consists in allocating a fleet of vehicles to attend the expected demand for road freight transportation between terminals along a finite multiperiod planning horizon. The objective is to maximize the profits generated for the completed services. Previous deterministic and stochastic approaches used heuristic procedures and approximation methods for solving large scale instances of this problem. This thesis contributes with models and solution methods for solving effectively large-scale instances of the VAP. The first method is Branch-and-Benders-Cut (BBC) for solving the space-time network formulation of the VAP. The Benders reformulation results in each subproblem being a multiple origin-destination minimum cost flow problem among empty vehicles exclusively. We propose two valid inequalities in order to reduce the number of infeasible cuts needed to reach a feasible and optimal solution. In addition, we use network flow algorithms in trying to accelerate the process of cut generation. Computational results are shown for randomly generated instances. The second method is a tailored exact Branch-and-Price (BP) procedure, that provides optimal solutions or certificates of quality, for solving large-scale problems within reasonable computational times. This method is the result of reformulating a compact Integer Linear Programming model of the VAP through the Dantzig-Wolfe (DW) decomposition and using efficient procedures for solving each component of the reformulation. The Primal Dual Column Generation Method (PDCGM) is used to solve the master problem, while the subproblem is modeled as a Maximum Cost Flow Problem and solved using the aggregation of optimal longest paths problems on Directed Acyclic Graphs (DAG). Finally, we resort to three branching procedures to obtain the optimal integer solution of the VAP. Computational experiments with instances from a case study and random realistic-sized instances are presented and analyzed, showing that the method has a superior performance with respect to other exact approaches in solving large-scale VAP instances. The third method is based on preprocessing the time-space extended graph and reformulating the problem in terms of routing empty vehicles along demand nodes. The resulting model's size depends on the number of demand nodes (arcs in the previous model) and fleet size, which can be advantageous when the number of terminal-period pairs in the time-space extended network is large compared to the actual number of loads requested. We propose a BP method based on the DW reformulation of this new modelling approach. The results of both, the reformulation solved by CPLEX and the BP, shows the superior performance of this new approach in solving realistic-sized instances of the VAP.O Problema de Alocação de Veículos (VAP) consiste em alocar uma frota de veículos para atender a demanda por serviços de transporte de carga entre terminais ao longo de um horário de planejamento. O objetivo é maximizar os lucros gerados pelos serviços completados. Prévias abordagens determinísticas e estocásticas utilizaram procedimentos heurísticos e de aproximação para resolver instâncias de grande porte para o problema. Esta tese contribui com modelos e métodos de solução exatos para resolver efetivamente instâncias do VAP de grande porte. O primeiro método é um algoritmo Branch-and-Benders-Cut para resolver a formulação baseada na rede de espaço-tempo do VAP. A reformulação de Benders resulta num subproblema com estrutura de Problema de Fluxo de Custo Mínimo para cada tipo de veículos onde o fluxo é constituído por veículos vazios exclusivamente. Nos propomos duas desigualdades válidas para tentar reduzir o número de cortes de factibilidade e otimalidade necessários para atingir a solução ótima. Adicionalmente, utilizamos algoritmos de fluxo em redes para acelerar o processo de geração de cortes. Experimentos computacionais são mostrados para instâncias geradas aleatoriamente. O segundo método é um algoritmo exato do tipo Branch-and-Price (BP), o qual proporciona soluções ótimas ou certificados de qualidade para resolver problemas de grande porte em tempos computacionais razoáveis. Este método é o resultado de reformular o modelo compacto de Programação Linear Inteira do VAP por meio da reformulação Dantzig-Wolfe e utilizar procedimentos e cientes para tratar cada componente da reformulação. O Método de Geração de Colunas Primal-Dual (PDCGM) é usado para resolver o problema mestre, enquanto o subproblema é modelado como um Problema de Fluxo de Custo Máximo é resolvido via agregação de soluções ótimas de caminhos máximos em Grafos Acıclicos Direcionados (DAG). Finalmente, propomos três procedimentos de rami cacao para obter a solução ótima inteira do VAP. Experimentos computacionais com instâncias de um estudo de caso e instâncias aleatórias de tamanho realista são apresentadas e analisadas, o qual mostra a superioridade do método proposto quando comparado com outros métodos exatos para resolver instâncias de grande porte do VAP. O terceiro método está baseado em pré-processar o grafo de espaço-tempo e reformular o problema em termos de quantos veículos vazios rotear entre os nós de demanda (arcos no modelo prévio). O tamanho do modelo resultante depende do número de nós de demanda e o tamanho da frota, o qual pode ser vantajoso quando o número de pares terminal-perıodos na rede de espaço-tempo é grande comparado com o número de arcos de demanda. Nós propomos um método BP baseado na reformulação Dantzig-Wolfe deste novo modelo. Os resultados de ambas, a reformulação resolvida com um solver de propósito geral e o BP, mostram a superioridade desta nova abordagem para resolver instˆancias de tamanho realista para o VAP.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 141300/2017-5engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia de Produção - PPGEPUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessProblema de Alocação de VeıculosDecomposição de BendersDecomposição de Dantzig-WolfeGeração de colunasTransporte rodoviário de cargaLogísticaVehicle Allocation ProblemDantzig-Wolfe decompositionBenders DecompositionColumn generationLogisticsRoad freight transportationENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONALOptimization models and solution methods for the vehicle allocation problemModelos e métodos de otimização para o problema de alocação de veículosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600ab73fe2d-ae49-4b7d-915b-b256b3c2d946reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALThesis_Cesar_VF_Repositorio.pdfThesis_Cesar_VF_Repositorio.pdfapplication/pdf8978055https://repositorio.ufscar.br/bitstream/ufscar/15387/3/Thesis_Cesar_VF_Repositorio.pdf12a0113cbef0edc2c85ba1330559c051MD53carta_aprovacao.pdfcarta_aprovacao.pdfCarta de aprovacaoapplication/pdf679751https://repositorio.ufscar.br/bitstream/ufscar/15387/4/carta_aprovacao.pdf2c1b59eaade25e1793fd372f33b26c8dMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/15387/5/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD55TEXTThesis_Cesar_VF_Repositorio.pdf.txtThesis_Cesar_VF_Repositorio.pdf.txtExtracted texttext/plain350526https://repositorio.ufscar.br/bitstream/ufscar/15387/6/Thesis_Cesar_VF_Repositorio.pdf.txt5a87ce025636843de3848aae23e8410dMD56carta_aprovacao.pdf.txtcarta_aprovacao.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstream/ufscar/15387/8/carta_aprovacao.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD58THUMBNAILThesis_Cesar_VF_Repositorio.pdf.jpgThesis_Cesar_VF_Repositorio.pdf.jpgIM Thumbnailimage/jpeg5898https://repositorio.ufscar.br/bitstream/ufscar/15387/7/Thesis_Cesar_VF_Repositorio.pdf.jpg11c6fa7a5a58fb99d5cd18e503a353a5MD57carta_aprovacao.pdf.jpgcarta_aprovacao.pdf.jpgIM Thumbnailimage/jpeg11068https://repositorio.ufscar.br/bitstream/ufscar/15387/9/carta_aprovacao.pdf.jpg4ff925d26ad1ec3eeddf88a0fb07f351MD59ufscar/153872023-09-18 18:32:28.249oai:repositorio.ufscar.br:ufscar/15387Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:32:28Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Optimization models and solution methods for the vehicle allocation problem |
dc.title.alternative.por.fl_str_mv |
Modelos e métodos de otimização para o problema de alocação de veículos |
title |
Optimization models and solution methods for the vehicle allocation problem |
spellingShingle |
Optimization models and solution methods for the vehicle allocation problem Alvarez Cruz, Cesar Dario Problema de Alocação de Veıculos Decomposição de Benders Decomposição de Dantzig-Wolfe Geração de colunas Transporte rodoviário de carga Logística Vehicle Allocation Problem Dantzig-Wolfe decomposition Benders Decomposition Column generation Logistics Road freight transportation ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL |
title_short |
Optimization models and solution methods for the vehicle allocation problem |
title_full |
Optimization models and solution methods for the vehicle allocation problem |
title_fullStr |
Optimization models and solution methods for the vehicle allocation problem |
title_full_unstemmed |
Optimization models and solution methods for the vehicle allocation problem |
title_sort |
Optimization models and solution methods for the vehicle allocation problem |
author |
Alvarez Cruz, Cesar Dario |
author_facet |
Alvarez Cruz, Cesar Dario |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/4498316314606067 |
dc.contributor.author.fl_str_mv |
Alvarez Cruz, Cesar Dario |
dc.contributor.advisor1.fl_str_mv |
Morabito Neto, Reinaldo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4194801952934254 |
dc.contributor.advisor-co1.fl_str_mv |
Munari Junior, Pedro Augusto |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/1328868140869976 |
dc.contributor.authorID.fl_str_mv |
74a10007-1b64-48aa-ba18-b6a4f6f0adb0 |
contributor_str_mv |
Morabito Neto, Reinaldo Munari Junior, Pedro Augusto |
dc.subject.por.fl_str_mv |
Problema de Alocação de Veıculos Decomposição de Benders Decomposição de Dantzig-Wolfe Geração de colunas Transporte rodoviário de carga Logística |
topic |
Problema de Alocação de Veıculos Decomposição de Benders Decomposição de Dantzig-Wolfe Geração de colunas Transporte rodoviário de carga Logística Vehicle Allocation Problem Dantzig-Wolfe decomposition Benders Decomposition Column generation Logistics Road freight transportation ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL |
dc.subject.eng.fl_str_mv |
Vehicle Allocation Problem Dantzig-Wolfe decomposition Benders Decomposition Column generation Logistics Road freight transportation |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL |
description |
The Vehicle Allocation Problem (VAP) consists in allocating a fleet of vehicles to attend the expected demand for road freight transportation between terminals along a finite multiperiod planning horizon. The objective is to maximize the profits generated for the completed services. Previous deterministic and stochastic approaches used heuristic procedures and approximation methods for solving large scale instances of this problem. This thesis contributes with models and solution methods for solving effectively large-scale instances of the VAP. The first method is Branch-and-Benders-Cut (BBC) for solving the space-time network formulation of the VAP. The Benders reformulation results in each subproblem being a multiple origin-destination minimum cost flow problem among empty vehicles exclusively. We propose two valid inequalities in order to reduce the number of infeasible cuts needed to reach a feasible and optimal solution. In addition, we use network flow algorithms in trying to accelerate the process of cut generation. Computational results are shown for randomly generated instances. The second method is a tailored exact Branch-and-Price (BP) procedure, that provides optimal solutions or certificates of quality, for solving large-scale problems within reasonable computational times. This method is the result of reformulating a compact Integer Linear Programming model of the VAP through the Dantzig-Wolfe (DW) decomposition and using efficient procedures for solving each component of the reformulation. The Primal Dual Column Generation Method (PDCGM) is used to solve the master problem, while the subproblem is modeled as a Maximum Cost Flow Problem and solved using the aggregation of optimal longest paths problems on Directed Acyclic Graphs (DAG). Finally, we resort to three branching procedures to obtain the optimal integer solution of the VAP. Computational experiments with instances from a case study and random realistic-sized instances are presented and analyzed, showing that the method has a superior performance with respect to other exact approaches in solving large-scale VAP instances. The third method is based on preprocessing the time-space extended graph and reformulating the problem in terms of routing empty vehicles along demand nodes. The resulting model's size depends on the number of demand nodes (arcs in the previous model) and fleet size, which can be advantageous when the number of terminal-period pairs in the time-space extended network is large compared to the actual number of loads requested. We propose a BP method based on the DW reformulation of this new modelling approach. The results of both, the reformulation solved by CPLEX and the BP, shows the superior performance of this new approach in solving realistic-sized instances of the VAP. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-12-20T15:13:33Z |
dc.date.available.fl_str_mv |
2021-12-20T15:13:33Z |
dc.date.issued.fl_str_mv |
2021-10-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ALVAREZ CRUZ, Cesar Dario. Optimization models and solution methods for the vehicle allocation problem. 2021. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15387. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/15387 |
identifier_str_mv |
ALVAREZ CRUZ, Cesar Dario. Optimization models and solution methods for the vehicle allocation problem. 2021. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15387. |
url |
https://repositorio.ufscar.br/handle/ufscar/15387 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
ab73fe2d-ae49-4b7d-915b-b256b3c2d946 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia de Produção - PPGEP |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/15387/3/Thesis_Cesar_VF_Repositorio.pdf https://repositorio.ufscar.br/bitstream/ufscar/15387/4/carta_aprovacao.pdf https://repositorio.ufscar.br/bitstream/ufscar/15387/5/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/15387/6/Thesis_Cesar_VF_Repositorio.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/15387/8/carta_aprovacao.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/15387/7/Thesis_Cesar_VF_Repositorio.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/15387/9/carta_aprovacao.pdf.jpg |
bitstream.checksum.fl_str_mv |
12a0113cbef0edc2c85ba1330559c051 2c1b59eaade25e1793fd372f33b26c8d e39d27027a6cc9cb039ad269a5db8e34 5a87ce025636843de3848aae23e8410d 68b329da9893e34099c7d8ad5cb9c940 11c6fa7a5a58fb99d5cd18e503a353a5 4ff925d26ad1ec3eeddf88a0fb07f351 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715640731566080 |