Imobilização da enzima β-galactosidase de Kluyveromyces fragilis em agarose e quitosana utilizando diferentes protocolos de ativação

Detalhes bibliográficos
Autor(a) principal: Vieira, Danielle Cristina
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/4009
Resumo: The objective of this work was stabilize and immobilize β-galactosidase from activated agarose and chitosan supports. Initially, it was evaluated the buffer type, ionic strength and bivalent ions Mn2+ and Mg2+ on the hydrolytic activity of the enzyme using as substrates lactose and o-NPG (o-nitrophenyl galactopyranoside). Then the enzyme was covalently immobilized on glyoxyl-agarose, epoxy-chitosan-alginate and chitosan activated with glutaraldehyde, encapsulation in agarose and chitosan and ionic adsorption on MANAE-agarose. After immobilization, different strategies were used to stabilize the derivative such as crosslinking with glutaraldehyde and polyaldehyde dextran for the enzyme immobilized by ionic adsorption and reduction with sodium borohydride (NaBH4) for the enzyme covalently immobilized. For the derivative with maximum catalytic activity obtained, we estimated the kinetic and biochemical parameters as well as thermal stability at different temperatures and storage, operational stability, effect of inhibition by galactose and lactose yield. In the lactose hydrolysis, the best conditions were evaluated at 45°C in 100 mM potassium phosphate buffer pH 7.0 and addition of 2 mM MgCl2 and 0.1 mM MnCl2 (6786.5 U/mL of crude extract) and in the hydrolysis of synthetic substrate, o-NPG, the conditions for maximum catalytic activity was buffer sodium phosphate pH 7.0 50 mM with 2 mM MgCl2 at 25°C (4466.1 U/mL of crude extract). The enzyme immobilization on glyoxyl-agarose at pH 10.05 inactivated the enzyme. At pH 7.0, the enzyme was not immobilized. Similar behavior was observed for the enzyme immobilized on epoxy-chitosan-alginate. The ionic adsorption of the enzyme on MANAE-agarose allowed obtaining derivatives with high catalytic activity and immobilization yield around 100%. Neverthelless the crosslinking of the immobilized enzyme using polyaldehyde dextran and glutaraldehyde reduced drastically the hydrolytic activity of the derivatives by distortion of the enzyme structure. Besides the thermal stability of these derivatives at 10°C showed a similar behavior to the free enzyme. In order to obtain a derivative with high thermal stability on catalytic activity, the covalent immobilization on coagulated chitosan by different solutions and temperature. The derivative that provided higher catalytic activity was coagulated in a solution of 0.5 M KOH at 50°C and activated with glutaraldehyde 0.8% (v/v), with immobilization yield and recovered activity of 100%. An assay of looding of the support showed that 247,0 mg protein/ g gel was the maximum load. However diffusional limitation was verified even at 25 mg/g of gel. The immobilization process did not change the biochemical properties of the enzyme (optimum temperature and pH). In the storage stability at 10 ° C, the derivative covalently immobilized lost only 20% of initial activity after 90 days. The enzyme immobilized on chitosan was 3-5 fold more stable than the soluble enzyme at 20 and 40°C. The operational stability in 4 cycles showed a loss of 17% of hydrolytic activity after 4 cycles. Another important fact was the smallest effect of inhibition by galactose compared to soluble enzyme, even at high concentrations (5 g/L). In the hydrolysis of lactose the conversion was 70 % using insoluble and immobilized enzymes. We can conclude that the β-galactosidase immobilized on chitosan activated with glutaraldehyde showed good properties, because it allows the development of continuous processes, facility of downstream process (product purification), avoiding contamination of the product by the biocatalyst. This advantage is very important specially for food industry.
id SCAR_e9c6b998fa74915fd7896226c0d4af26
oai_identifier_str oai:repositorio.ufscar.br:ufscar/4009
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Vieira, Danielle CristinaGiordano, Raquel de Lima Camargohttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4780181P0http://lattes.cnpq.br/16234336794373037daa471e-a9d5-42ce-be43-c94dc2d4d1c72016-06-02T19:56:33Z2009-07-142016-06-02T19:56:33Z2009-02-27VIEIRA, Danielle Cristina. Imobilização da enzima β-galactosidase de Kluyveromyces fragilis em agarose e quitosana utilizando diferentes protocolos de ativação. 2009. 115 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.https://repositorio.ufscar.br/handle/ufscar/4009The objective of this work was stabilize and immobilize β-galactosidase from activated agarose and chitosan supports. Initially, it was evaluated the buffer type, ionic strength and bivalent ions Mn2+ and Mg2+ on the hydrolytic activity of the enzyme using as substrates lactose and o-NPG (o-nitrophenyl galactopyranoside). Then the enzyme was covalently immobilized on glyoxyl-agarose, epoxy-chitosan-alginate and chitosan activated with glutaraldehyde, encapsulation in agarose and chitosan and ionic adsorption on MANAE-agarose. After immobilization, different strategies were used to stabilize the derivative such as crosslinking with glutaraldehyde and polyaldehyde dextran for the enzyme immobilized by ionic adsorption and reduction with sodium borohydride (NaBH4) for the enzyme covalently immobilized. For the derivative with maximum catalytic activity obtained, we estimated the kinetic and biochemical parameters as well as thermal stability at different temperatures and storage, operational stability, effect of inhibition by galactose and lactose yield. In the lactose hydrolysis, the best conditions were evaluated at 45°C in 100 mM potassium phosphate buffer pH 7.0 and addition of 2 mM MgCl2 and 0.1 mM MnCl2 (6786.5 U/mL of crude extract) and in the hydrolysis of synthetic substrate, o-NPG, the conditions for maximum catalytic activity was buffer sodium phosphate pH 7.0 50 mM with 2 mM MgCl2 at 25°C (4466.1 U/mL of crude extract). The enzyme immobilization on glyoxyl-agarose at pH 10.05 inactivated the enzyme. At pH 7.0, the enzyme was not immobilized. Similar behavior was observed for the enzyme immobilized on epoxy-chitosan-alginate. The ionic adsorption of the enzyme on MANAE-agarose allowed obtaining derivatives with high catalytic activity and immobilization yield around 100%. Neverthelless the crosslinking of the immobilized enzyme using polyaldehyde dextran and glutaraldehyde reduced drastically the hydrolytic activity of the derivatives by distortion of the enzyme structure. Besides the thermal stability of these derivatives at 10°C showed a similar behavior to the free enzyme. In order to obtain a derivative with high thermal stability on catalytic activity, the covalent immobilization on coagulated chitosan by different solutions and temperature. The derivative that provided higher catalytic activity was coagulated in a solution of 0.5 M KOH at 50°C and activated with glutaraldehyde 0.8% (v/v), with immobilization yield and recovered activity of 100%. An assay of looding of the support showed that 247,0 mg protein/ g gel was the maximum load. However diffusional limitation was verified even at 25 mg/g of gel. The immobilization process did not change the biochemical properties of the enzyme (optimum temperature and pH). In the storage stability at 10 ° C, the derivative covalently immobilized lost only 20% of initial activity after 90 days. The enzyme immobilized on chitosan was 3-5 fold more stable than the soluble enzyme at 20 and 40°C. The operational stability in 4 cycles showed a loss of 17% of hydrolytic activity after 4 cycles. Another important fact was the smallest effect of inhibition by galactose compared to soluble enzyme, even at high concentrations (5 g/L). In the hydrolysis of lactose the conversion was 70 % using insoluble and immobilized enzymes. We can conclude that the β-galactosidase immobilized on chitosan activated with glutaraldehyde showed good properties, because it allows the development of continuous processes, facility of downstream process (product purification), avoiding contamination of the product by the biocatalyst. This advantage is very important specially for food industry.O objetivo deste trabalho foi imobilizar e estabilizar β-galactosidase de Kluyveromyces fragilis utilizando diferentes estratégias de imobilização em suportes orgânicos quitosana e agarose, com diferentes protocolos de ativação. Inicialmente, foi avaliado o tipo de tampão, força iônica e a suplementação com íons bivalentes Mn2+ e Mg2+ sobre a atividade hidrolítica da enzima empregando lactose e o-NPG (o-nitrofenil galactopiranosídeo) como substratos. A enzima foi imobilizada covalentemente em glioxil-agarose, epóxi-quitosana-alginato e quitosana ativada com glutaraldeído, por encapsulação em agarose e quitosana e por adsorção iônica em MANAE-agarose. Após a imobilização, diferentes estratégias foram adotadas para a estabilização do derivado como o entrecruzamento com glutaraldeído e polialdeído dextrana para a enzima imobilizada por adsorção iônica e a redução com borohidreto de sódio (NaBH4) para a enzima imobilizada covalentemente. Para o melhor derivado de β-galactosidase foram estimados pH e temperatura de máxima atividade catalítica; estudados estabilidade térmica e operacional; efeito de inibição pela galactose e conversão de lactose. Na hidrólise da lactose, as melhores condições avaliadas foram a 45°C em tampão fosfato de potássio 100 mM pH 7,0 e adição de 2 mM MgCl2 e 0,1 mM MnCl2 (6786,5 U/mL de extrato) e na hidrólise do substrato sintético, o-NPG, a máxima atividade foi obtida em tampão fosfato de sódio 50 mM pH 7,0 com 2 mM MgCl2 a 25°C (4466,1 U/mL de extrato). A imobilização da enzima em gel glioxil-agarose não forneceu um derivado ativo, pois no pH de imobilização (10,05) a enzima sofreu inativação. Comportamento similar foi verificado para a enzima imobilizada em epóxi-quitosana-alginato. A adsorção iônica da enzima em MANAE-agarose forneceu derivados com elevada atividade catalítica e rendimento de imobilização da ordem de 100%. Porém, o entrecruzamento com polialdeído dextrana e glutaraldeído pós-imobilização reduziu drasticamente a atividade hidrolítica dos derivados provavelmente por distorção da estrutura ativa da enzima. Mesmo com o entrecruzamento, a estabilidade térmica destes derivados a 10°C apresentou um comportamento similar à enzima livre. Com o propósito de obter um derivado mais estável termicamente e com elevada atividade catalítica, foram avaliadas diferentes estratégias de imobilização covalente em quitosana coagulada por diferentes soluções e temperatura. O derivado que forneceu maior atividade catalítica foi obtido imobilizando a enzima em quitosana coagulada em solução 0,5 M de KOH a 50°C e ativado com glutaraldeído 0,8% (v/v), com atividade recuperada e rendimento de imobilização de 100%. A máxima concentração de enzima imobilizada neste suporte foi de 247,0 mg de proteína/g de gel. Após o carregamento de 25 mg/g de gel, limitação difusional foi verificada. A imobilização não alterou o pH e temperatura de máxima atividade hidrolítica da β-galactosidase. A enzima imobilizada em quitosana-glutaraldeído perdeu apenas 20% da atividade inicial após 90 dias incubada no tampão fosfato de potássio 20 mM pH 7,0 com íons bivalentes Mn2+ e Mg2+a 10°C, foi 3-5 vezes mais estável que a enzima solúvel nas temperaturas de 20 e 40°C, pH7,0. A estabilidade operacional (40ºC e pH7,0) realizada em 4 ciclos mostrou uma perda de 17% da atividade hidrolítica inicial ao final do quarto ciclo. Outro fato relevante foi o menor efeito de inibição da enzima imobilizada pela galactose em comparação à enzima solúvel, mesmo em altas concentrações (5 g/L). Na hidrólise de lactose a 40ºC e pH 7,0 foi verificada uma conversão de 70% da lactose para ambas as enzimas, solúvel e imobilizada. De acordo com os resultados obtidos, pôde-se verificar que a imobilização de β-galactosidase em quitosana ativada com glutaraldeído foi vantajosa, pois permite o desenvolvimento de processos contínuos de produção, simplifica a etapa de purificação do produto final e especificamente para fins alimentícios, reduz ou evita a contaminação do produto pelo biocatalisador.Universidade Federal de Sao Carlosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarBRImobilizaçãoQuitosanaAgaroseEnzimasLactoseImmobilizationAgarose and chitosanENGENHARIAS::ENGENHARIA QUIMICAImobilização da enzima β-galactosidase de Kluyveromyces fragilis em agarose e quitosana utilizando diferentes protocolos de ativaçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1-187b60e6c-591e-4a38-94f3-e75e2beebea0info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL2277.pdfapplication/pdf933463https://repositorio.ufscar.br/bitstream/ufscar/4009/1/2277.pdf01507ff9166cf8406e37c047022142e1MD51THUMBNAIL2277.pdf.jpg2277.pdf.jpgIM Thumbnailimage/jpeg8104https://repositorio.ufscar.br/bitstream/ufscar/4009/2/2277.pdf.jpga4d55b918d3ce7c58083ebe02a18ead0MD52ufscar/40092023-09-18 18:31:47.393oai:repositorio.ufscar.br:ufscar/4009Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:47Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Imobilização da enzima β-galactosidase de Kluyveromyces fragilis em agarose e quitosana utilizando diferentes protocolos de ativação
title Imobilização da enzima β-galactosidase de Kluyveromyces fragilis em agarose e quitosana utilizando diferentes protocolos de ativação
spellingShingle Imobilização da enzima β-galactosidase de Kluyveromyces fragilis em agarose e quitosana utilizando diferentes protocolos de ativação
Vieira, Danielle Cristina
Imobilização
Quitosana
Agarose
Enzimas
Lactose
Immobilization
Agarose and chitosan
ENGENHARIAS::ENGENHARIA QUIMICA
title_short Imobilização da enzima β-galactosidase de Kluyveromyces fragilis em agarose e quitosana utilizando diferentes protocolos de ativação
title_full Imobilização da enzima β-galactosidase de Kluyveromyces fragilis em agarose e quitosana utilizando diferentes protocolos de ativação
title_fullStr Imobilização da enzima β-galactosidase de Kluyveromyces fragilis em agarose e quitosana utilizando diferentes protocolos de ativação
title_full_unstemmed Imobilização da enzima β-galactosidase de Kluyveromyces fragilis em agarose e quitosana utilizando diferentes protocolos de ativação
title_sort Imobilização da enzima β-galactosidase de Kluyveromyces fragilis em agarose e quitosana utilizando diferentes protocolos de ativação
author Vieira, Danielle Cristina
author_facet Vieira, Danielle Cristina
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/1623433679437303
dc.contributor.author.fl_str_mv Vieira, Danielle Cristina
dc.contributor.advisor1.fl_str_mv Giordano, Raquel de Lima Camargo
dc.contributor.advisor1Lattes.fl_str_mv http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4780181P0
dc.contributor.authorID.fl_str_mv 7daa471e-a9d5-42ce-be43-c94dc2d4d1c7
contributor_str_mv Giordano, Raquel de Lima Camargo
dc.subject.por.fl_str_mv Imobilização
Quitosana
Agarose
Enzimas
Lactose
topic Imobilização
Quitosana
Agarose
Enzimas
Lactose
Immobilization
Agarose and chitosan
ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv Immobilization
Agarose and chitosan
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA
description The objective of this work was stabilize and immobilize β-galactosidase from activated agarose and chitosan supports. Initially, it was evaluated the buffer type, ionic strength and bivalent ions Mn2+ and Mg2+ on the hydrolytic activity of the enzyme using as substrates lactose and o-NPG (o-nitrophenyl galactopyranoside). Then the enzyme was covalently immobilized on glyoxyl-agarose, epoxy-chitosan-alginate and chitosan activated with glutaraldehyde, encapsulation in agarose and chitosan and ionic adsorption on MANAE-agarose. After immobilization, different strategies were used to stabilize the derivative such as crosslinking with glutaraldehyde and polyaldehyde dextran for the enzyme immobilized by ionic adsorption and reduction with sodium borohydride (NaBH4) for the enzyme covalently immobilized. For the derivative with maximum catalytic activity obtained, we estimated the kinetic and biochemical parameters as well as thermal stability at different temperatures and storage, operational stability, effect of inhibition by galactose and lactose yield. In the lactose hydrolysis, the best conditions were evaluated at 45°C in 100 mM potassium phosphate buffer pH 7.0 and addition of 2 mM MgCl2 and 0.1 mM MnCl2 (6786.5 U/mL of crude extract) and in the hydrolysis of synthetic substrate, o-NPG, the conditions for maximum catalytic activity was buffer sodium phosphate pH 7.0 50 mM with 2 mM MgCl2 at 25°C (4466.1 U/mL of crude extract). The enzyme immobilization on glyoxyl-agarose at pH 10.05 inactivated the enzyme. At pH 7.0, the enzyme was not immobilized. Similar behavior was observed for the enzyme immobilized on epoxy-chitosan-alginate. The ionic adsorption of the enzyme on MANAE-agarose allowed obtaining derivatives with high catalytic activity and immobilization yield around 100%. Neverthelless the crosslinking of the immobilized enzyme using polyaldehyde dextran and glutaraldehyde reduced drastically the hydrolytic activity of the derivatives by distortion of the enzyme structure. Besides the thermal stability of these derivatives at 10°C showed a similar behavior to the free enzyme. In order to obtain a derivative with high thermal stability on catalytic activity, the covalent immobilization on coagulated chitosan by different solutions and temperature. The derivative that provided higher catalytic activity was coagulated in a solution of 0.5 M KOH at 50°C and activated with glutaraldehyde 0.8% (v/v), with immobilization yield and recovered activity of 100%. An assay of looding of the support showed that 247,0 mg protein/ g gel was the maximum load. However diffusional limitation was verified even at 25 mg/g of gel. The immobilization process did not change the biochemical properties of the enzyme (optimum temperature and pH). In the storage stability at 10 ° C, the derivative covalently immobilized lost only 20% of initial activity after 90 days. The enzyme immobilized on chitosan was 3-5 fold more stable than the soluble enzyme at 20 and 40°C. The operational stability in 4 cycles showed a loss of 17% of hydrolytic activity after 4 cycles. Another important fact was the smallest effect of inhibition by galactose compared to soluble enzyme, even at high concentrations (5 g/L). In the hydrolysis of lactose the conversion was 70 % using insoluble and immobilized enzymes. We can conclude that the β-galactosidase immobilized on chitosan activated with glutaraldehyde showed good properties, because it allows the development of continuous processes, facility of downstream process (product purification), avoiding contamination of the product by the biocatalyst. This advantage is very important specially for food industry.
publishDate 2009
dc.date.available.fl_str_mv 2009-07-14
2016-06-02T19:56:33Z
dc.date.issued.fl_str_mv 2009-02-27
dc.date.accessioned.fl_str_mv 2016-06-02T19:56:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv VIEIRA, Danielle Cristina. Imobilização da enzima β-galactosidase de Kluyveromyces fragilis em agarose e quitosana utilizando diferentes protocolos de ativação. 2009. 115 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/4009
identifier_str_mv VIEIRA, Danielle Cristina. Imobilização da enzima β-galactosidase de Kluyveromyces fragilis em agarose e quitosana utilizando diferentes protocolos de ativação. 2009. 115 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.
url https://repositorio.ufscar.br/handle/ufscar/4009
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv -1
-1
dc.relation.authority.fl_str_mv 87b60e6c-591e-4a38-94f3-e75e2beebea0
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal de São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/4009/1/2277.pdf
https://repositorio.ufscar.br/bitstream/ufscar/4009/2/2277.pdf.jpg
bitstream.checksum.fl_str_mv 01507ff9166cf8406e37c047022142e1
a4d55b918d3ce7c58083ebe02a18ead0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715532575145984