Single, multi- and many-objective meta-heuristic algorithms applied to pattern recognition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/12123 |
Resumo: | In the last few years, metaheuristic algorithms have been used for solving several problems in engineering, biology, physics, among others, since many of them can be modeled as being optimization tasks. Metaheuristic methods simulate social dynamics and physical phenomena such as the interaction among bats, some species of birds, insects or even gravitational force. Although these metaheuristic techniques are commonly applied to solve single-objective problems, they are also being used to solve multi- and many-objective problems, where the idea of a single global optimal solution is replaced by the concept of Pareto-front. In computer vision and pattern recognition areas, little effort has been dedicated to multi-objective optimization using metaheuristics. As such, this thesis aims at studying and developing new mono, multi- and many-objective versions of metaheuristic techniques in the context of machine learning, which include, among other areas, feature combination and selection, parameter optimization of machine learning techniques and deep learning. |
id |
SCAR_ef45a92b87d67b83a3df2675076b6df3 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/12123 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Rodrigues, DouglasPapa, João Paulohttp://lattes.cnpq.br/9039182932747194http://lattes.cnpq.br/29370002028767618e38869e-fada-4d0a-af17-2debfde2c4c82019-12-10T18:24:43Z2019-12-10T18:24:43Z2019-07-10RODRIGUES, Douglas. Single, multi- and many-objective meta-heuristic algorithms applied to pattern recognition. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12123.https://repositorio.ufscar.br/handle/ufscar/12123In the last few years, metaheuristic algorithms have been used for solving several problems in engineering, biology, physics, among others, since many of them can be modeled as being optimization tasks. Metaheuristic methods simulate social dynamics and physical phenomena such as the interaction among bats, some species of birds, insects or even gravitational force. Although these metaheuristic techniques are commonly applied to solve single-objective problems, they are also being used to solve multi- and many-objective problems, where the idea of a single global optimal solution is replaced by the concept of Pareto-front. In computer vision and pattern recognition areas, little effort has been dedicated to multi-objective optimization using metaheuristics. As such, this thesis aims at studying and developing new mono, multi- and many-objective versions of metaheuristic techniques in the context of machine learning, which include, among other areas, feature combination and selection, parameter optimization of machine learning techniques and deep learning.Algoritmos meta-heurísticos têm sido empregados, nos últimos anos, para a resolução de diversos problemas na área de engenharia, biologia, física, entre outras, dado que muitos deles podem ser modelados como tarefas de otimização. Tais métodos meta-heurísticos simulam dinâmicas sociais e fenômenos físicos como a interação entre morcegos, algumas espécies de aves, insetos ou até mesmo a própria força gravitacional. Muito embora, essas técnicas meta-heurísticas sejam comumente aplicadas na resolução de problemas mono-objetivo, elas também estão sendo utilizadas para a resolução de problemas multi e de muitos objetivos, onde a ideia de uma única solução ótima global é substituída pelo conceito de fronteira Pareto-ótima. Na área de visão computacional e reconhecimento de padrões, pouco ainda tem sido explorado no que diz respeito à otimização multi-objetivos utilizando meta-heurísticas. Desta forma, a presente tese objetiva o estudo e desenvolvimento de versões mono, multi, e de muitos objetivos de novas técnicas meta-heurísticas no contexto de aprendizado de máquina, que engloba, dentre outras áreas, a seleção e combinação de características, bem como otimização de parâmetros de técnicas de aprendizado de máquina e aprendizado em profundidade.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: código de financiamento - 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAprendizado de máquinaAlgoritmos meta-heurísticosOtimizaçãoMachine learningMeta-heuristic algorithmsOptimizationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOSingle, multi- and many-objective meta-heuristic algorithms applied to pattern recognitionAlgoritmos meta-heurísticos mono, multi e de muitos objetivos aplicados ao reconhecimento de padrõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fdreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDouglas_Rodrigues_tese.pdfDouglas_Rodrigues_tese.pdfTese de doutoradoapplication/pdf2750862https://repositorio.ufscar.br/bitstream/ufscar/12123/1/Douglas_Rodrigues_tese.pdfa2a47c0da20ac34ece78e4dabfcfb64eMD51Carta_Comprovante.pdfCarta_Comprovante.pdfCarta de autorização de publicação assinada pelo orientadorapplication/pdf79736https://repositorio.ufscar.br/bitstream/ufscar/12123/2/Carta_Comprovante.pdf0a7f084616c0320d7df3c54a1b5e06dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstream/ufscar/12123/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD53TEXTDouglas_Rodrigues_tese.pdf.txtDouglas_Rodrigues_tese.pdf.txtExtracted texttext/plain317796https://repositorio.ufscar.br/bitstream/ufscar/12123/4/Douglas_Rodrigues_tese.pdf.txt2a8162cd08baeba9c1e19266c741ef8bMD54Carta_Comprovante.pdf.txtCarta_Comprovante.pdf.txtExtracted texttext/plain1276https://repositorio.ufscar.br/bitstream/ufscar/12123/6/Carta_Comprovante.pdf.txt7ec604ce3bc755e31a378dde67f86d64MD56THUMBNAILDouglas_Rodrigues_tese.pdf.jpgDouglas_Rodrigues_tese.pdf.jpgIM Thumbnailimage/jpeg7676https://repositorio.ufscar.br/bitstream/ufscar/12123/5/Douglas_Rodrigues_tese.pdf.jpg212b4c315783bcc906751df896548f20MD55Carta_Comprovante.pdf.jpgCarta_Comprovante.pdf.jpgIM Thumbnailimage/jpeg5208https://repositorio.ufscar.br/bitstream/ufscar/12123/7/Carta_Comprovante.pdf.jpg0815cfd811bba5672d6ab3e4f201e497MD57ufscar/121232023-09-18 18:31:47.61oai:repositorio.ufscar.br:ufscar/12123Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:47Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Single, multi- and many-objective meta-heuristic algorithms applied to pattern recognition |
dc.title.alternative.por.fl_str_mv |
Algoritmos meta-heurísticos mono, multi e de muitos objetivos aplicados ao reconhecimento de padrões |
title |
Single, multi- and many-objective meta-heuristic algorithms applied to pattern recognition |
spellingShingle |
Single, multi- and many-objective meta-heuristic algorithms applied to pattern recognition Rodrigues, Douglas Aprendizado de máquina Algoritmos meta-heurísticos Otimização Machine learning Meta-heuristic algorithms Optimization CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
title_short |
Single, multi- and many-objective meta-heuristic algorithms applied to pattern recognition |
title_full |
Single, multi- and many-objective meta-heuristic algorithms applied to pattern recognition |
title_fullStr |
Single, multi- and many-objective meta-heuristic algorithms applied to pattern recognition |
title_full_unstemmed |
Single, multi- and many-objective meta-heuristic algorithms applied to pattern recognition |
title_sort |
Single, multi- and many-objective meta-heuristic algorithms applied to pattern recognition |
author |
Rodrigues, Douglas |
author_facet |
Rodrigues, Douglas |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/2937000202876761 |
dc.contributor.author.fl_str_mv |
Rodrigues, Douglas |
dc.contributor.advisor1.fl_str_mv |
Papa, João Paulo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9039182932747194 |
dc.contributor.authorID.fl_str_mv |
8e38869e-fada-4d0a-af17-2debfde2c4c8 |
contributor_str_mv |
Papa, João Paulo |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Algoritmos meta-heurísticos Otimização |
topic |
Aprendizado de máquina Algoritmos meta-heurísticos Otimização Machine learning Meta-heuristic algorithms Optimization CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
dc.subject.eng.fl_str_mv |
Machine learning Meta-heuristic algorithms Optimization |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
description |
In the last few years, metaheuristic algorithms have been used for solving several problems in engineering, biology, physics, among others, since many of them can be modeled as being optimization tasks. Metaheuristic methods simulate social dynamics and physical phenomena such as the interaction among bats, some species of birds, insects or even gravitational force. Although these metaheuristic techniques are commonly applied to solve single-objective problems, they are also being used to solve multi- and many-objective problems, where the idea of a single global optimal solution is replaced by the concept of Pareto-front. In computer vision and pattern recognition areas, little effort has been dedicated to multi-objective optimization using metaheuristics. As such, this thesis aims at studying and developing new mono, multi- and many-objective versions of metaheuristic techniques in the context of machine learning, which include, among other areas, feature combination and selection, parameter optimization of machine learning techniques and deep learning. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-12-10T18:24:43Z |
dc.date.available.fl_str_mv |
2019-12-10T18:24:43Z |
dc.date.issued.fl_str_mv |
2019-07-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RODRIGUES, Douglas. Single, multi- and many-objective meta-heuristic algorithms applied to pattern recognition. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12123. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/12123 |
identifier_str_mv |
RODRIGUES, Douglas. Single, multi- and many-objective meta-heuristic algorithms applied to pattern recognition. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12123. |
url |
https://repositorio.ufscar.br/handle/ufscar/12123 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fd |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/12123/1/Douglas_Rodrigues_tese.pdf https://repositorio.ufscar.br/bitstream/ufscar/12123/2/Carta_Comprovante.pdf https://repositorio.ufscar.br/bitstream/ufscar/12123/3/license_rdf https://repositorio.ufscar.br/bitstream/ufscar/12123/4/Douglas_Rodrigues_tese.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/12123/6/Carta_Comprovante.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/12123/5/Douglas_Rodrigues_tese.pdf.jpg https://repositorio.ufscar.br/bitstream/ufscar/12123/7/Carta_Comprovante.pdf.jpg |
bitstream.checksum.fl_str_mv |
a2a47c0da20ac34ece78e4dabfcfb64e 0a7f084616c0320d7df3c54a1b5e06df e39d27027a6cc9cb039ad269a5db8e34 2a8162cd08baeba9c1e19266c741ef8b 7ec604ce3bc755e31a378dde67f86d64 212b4c315783bcc906751df896548f20 0815cfd811bba5672d6ab3e4f201e497 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715611622047744 |