Combinação de classificadores baseados em floresta de caminhos ótimos

Detalhes bibliográficos
Autor(a) principal: Fernandes, Silas Evandro Nachif
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/9511
Resumo: Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, among the several studies on classification techniques and how to improve them, the ensemble of classifiers has achieved considerable evidence in the literature. In this circumstance, a classifier with significant growth is the technique called Optimum-Path Forest (OPF), which is considerable ease to manipulate, has no parameters in some versions, and it is efficient in the training phase. Since OPF is a relatively new technique in the literature, and we have few studies on ensemble of OPF classifiers only, this work aims to provide a more detailed study in ensemble techniques regarding the OPF classifier. This work has proposed an improved version of OPF, which learns a score-based confidence level for each training sample in order to turn the classification process “smarter” (i.e., more reliable), which is further used in a combination process with majority voting. Furthermore, we also proposed the combination of classifiers using an ensemble pruning strategy driven by meta-heuristics based on quaternions. In addition, we proposed an extension of the ensemble pruning using OPF classifiers in the context of remote sensing images. Finally, the probabilistic OPF was proposed, since the OPF presents only abstract outputs. Experimental results over synthetic and real datasets showed the effectiveness and efficiency of the proposed approaches for classification problems.
id SCAR_efc720cc8909e2a874239c5a769406d0
oai_identifier_str oai:repositorio.ufscar.br:ufscar/9511
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Fernandes, Silas Evandro NachifPapa, João Paulohttp://lattes.cnpq.br/9039182932747194http://lattes.cnpq.br/3584861614841162f15ee7dd-5d5e-4018-9473-4f49b3d567102018-03-05T18:03:26Z2018-03-05T18:03:26Z2017-08-31FERNANDES, Silas Evandro Nachif. Combinação de classificadores baseados em floresta de caminhos ótimos. 2017. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9511.https://repositorio.ufscar.br/handle/ufscar/9511Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, among the several studies on classification techniques and how to improve them, the ensemble of classifiers has achieved considerable evidence in the literature. In this circumstance, a classifier with significant growth is the technique called Optimum-Path Forest (OPF), which is considerable ease to manipulate, has no parameters in some versions, and it is efficient in the training phase. Since OPF is a relatively new technique in the literature, and we have few studies on ensemble of OPF classifiers only, this work aims to provide a more detailed study in ensemble techniques regarding the OPF classifier. This work has proposed an improved version of OPF, which learns a score-based confidence level for each training sample in order to turn the classification process “smarter” (i.e., more reliable), which is further used in a combination process with majority voting. Furthermore, we also proposed the combination of classifiers using an ensemble pruning strategy driven by meta-heuristics based on quaternions. In addition, we proposed an extension of the ensemble pruning using OPF classifiers in the context of remote sensing images. Finally, the probabilistic OPF was proposed, since the OPF presents only abstract outputs. Experimental results over synthetic and real datasets showed the effectiveness and efficiency of the proposed approaches for classification problems.Técnicas de aprendizado de máquina têm sido amplamente estudadas nos últimos anos, principalmente devido ao grande número de aplicações que usam algum mecanismo de inteligência para tomar decisões. Nesse contexto, dentre os diversos estudos sobre técnicas de classificação e como melhorá-las, o campo de combinação de classificadores tem ganhado evidência na literatura. Nessa circunstância, um classificador com destaque crescente na literatura é a técnica denominada de Floresta de Caminhos Ótimos (Optimum-Path Forest - OPF), a qual, devido à sua facilidade de utilização, ausência de parâmetros em algumas versões e eficiência na etapa de treinamento de dados, tem se mostrado uma abordagem interessante para problemas de classificação. Por ser uma técnica relativamente recente na literatura e apresentar poucos estudos sobre estratégias de combinação de classificadores, a presente tese visa apresentar um estudo sobre combinação com foco no classificador OPF. A destacar, o estudo com aprendizado dos níveis de confiança baseados em pontuações para o conjunto de treinamento, o qual tem por finalidade aprender amostras mais confiáveis para a etapa de classificação, sendo estas utilizadas em um processo de combinação de classificadores OPF com votação por maioria. Além desse estudo, foi proposta também a combinação de classificadores utilizando a poda de conjunto guiada por otimização meta-heurística baseada em quatérnions. Ademais, foi proposta uma extensão da poda de conjunto utilizando classificadores OPFs no contexto de imagens de sensoriamento remoto e, por fim, foi proposto o OPF probabilístico, visto que tradicionalmente o OPF apresenta saídas abstratas apenas. Testes empíricos sobre bases de dados reais e sintéticas evidenciaram que os estudos propostos neste trabalho alcançaram relevante eficácia e eficiência em diversos cenários.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 1262179porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarFloresta de caminhos ótimosCombinação de classificadoresReconhecimento de padrõesOptimum-path forestEnsemble classifiersPattern recognitionCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOCombinação de classificadores baseados em floresta de caminhos ótimosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fdinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/9511/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53ORIGINALFERNANDES_Silas_2018.pdfFERNANDES_Silas_2018.pdfapplication/pdf8328470https://repositorio.ufscar.br/bitstream/ufscar/9511/4/FERNANDES_Silas_2018.pdf1049a9e8218d03879617a0ef49f94e89MD54TEXTFERNANDES_Silas_2018.pdf.txtFERNANDES_Silas_2018.pdf.txtExtracted texttext/plain244930https://repositorio.ufscar.br/bitstream/ufscar/9511/5/FERNANDES_Silas_2018.pdf.txt5e7f305bd737e62530b1cb0605a61307MD55THUMBNAILFERNANDES_Silas_2018.pdf.jpgFERNANDES_Silas_2018.pdf.jpgIM Thumbnailimage/jpeg8142https://repositorio.ufscar.br/bitstream/ufscar/9511/6/FERNANDES_Silas_2018.pdf.jpg3b785cd85cb9105072c020b023e6604dMD56ufscar/95112023-09-18 18:31:13.738oai:repositorio.ufscar.br:ufscar/9511TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:13Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Combinação de classificadores baseados em floresta de caminhos ótimos
title Combinação de classificadores baseados em floresta de caminhos ótimos
spellingShingle Combinação de classificadores baseados em floresta de caminhos ótimos
Fernandes, Silas Evandro Nachif
Floresta de caminhos ótimos
Combinação de classificadores
Reconhecimento de padrões
Optimum-path forest
Ensemble classifiers
Pattern recognition
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short Combinação de classificadores baseados em floresta de caminhos ótimos
title_full Combinação de classificadores baseados em floresta de caminhos ótimos
title_fullStr Combinação de classificadores baseados em floresta de caminhos ótimos
title_full_unstemmed Combinação de classificadores baseados em floresta de caminhos ótimos
title_sort Combinação de classificadores baseados em floresta de caminhos ótimos
author Fernandes, Silas Evandro Nachif
author_facet Fernandes, Silas Evandro Nachif
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3584861614841162
dc.contributor.author.fl_str_mv Fernandes, Silas Evandro Nachif
dc.contributor.advisor1.fl_str_mv Papa, João Paulo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9039182932747194
dc.contributor.authorID.fl_str_mv f15ee7dd-5d5e-4018-9473-4f49b3d56710
contributor_str_mv Papa, João Paulo
dc.subject.por.fl_str_mv Floresta de caminhos ótimos
Combinação de classificadores
Reconhecimento de padrões
topic Floresta de caminhos ótimos
Combinação de classificadores
Reconhecimento de padrões
Optimum-path forest
Ensemble classifiers
Pattern recognition
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv Optimum-path forest
Ensemble classifiers
Pattern recognition
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, among the several studies on classification techniques and how to improve them, the ensemble of classifiers has achieved considerable evidence in the literature. In this circumstance, a classifier with significant growth is the technique called Optimum-Path Forest (OPF), which is considerable ease to manipulate, has no parameters in some versions, and it is efficient in the training phase. Since OPF is a relatively new technique in the literature, and we have few studies on ensemble of OPF classifiers only, this work aims to provide a more detailed study in ensemble techniques regarding the OPF classifier. This work has proposed an improved version of OPF, which learns a score-based confidence level for each training sample in order to turn the classification process “smarter” (i.e., more reliable), which is further used in a combination process with majority voting. Furthermore, we also proposed the combination of classifiers using an ensemble pruning strategy driven by meta-heuristics based on quaternions. In addition, we proposed an extension of the ensemble pruning using OPF classifiers in the context of remote sensing images. Finally, the probabilistic OPF was proposed, since the OPF presents only abstract outputs. Experimental results over synthetic and real datasets showed the effectiveness and efficiency of the proposed approaches for classification problems.
publishDate 2017
dc.date.issued.fl_str_mv 2017-08-31
dc.date.accessioned.fl_str_mv 2018-03-05T18:03:26Z
dc.date.available.fl_str_mv 2018-03-05T18:03:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FERNANDES, Silas Evandro Nachif. Combinação de classificadores baseados em floresta de caminhos ótimos. 2017. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9511.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/9511
identifier_str_mv FERNANDES, Silas Evandro Nachif. Combinação de classificadores baseados em floresta de caminhos ótimos. 2017. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9511.
url https://repositorio.ufscar.br/handle/ufscar/9511
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fd
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/9511/3/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/9511/4/FERNANDES_Silas_2018.pdf
https://repositorio.ufscar.br/bitstream/ufscar/9511/5/FERNANDES_Silas_2018.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/9511/6/FERNANDES_Silas_2018.pdf.jpg
bitstream.checksum.fl_str_mv ae0398b6f8b235e40ad82cba6c50031d
1049a9e8218d03879617a0ef49f94e89
5e7f305bd737e62530b1cb0605a61307
3b785cd85cb9105072c020b023e6604d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715582140284928