Controle da ingestão de água e sódio pelos mecanismos adrenérgicos do núcleo parabraquial lateral
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/1241 |
Resumo: | The activation of α2-adrenoceptors with noradrenaline injected into the lateral parabrachial nucleus (LPBN) increases 1.8% NaCl intake in rats treated with the diuretic furosemide (FURO) combined with low dose of the angiotensin converting enzyme inhibitor captopril (CAP) subcutaneously (s.c.). In addition, noradrenaline injected into the LPBN increases arterial pressure and decreases water intake. In the present study, one of the objectives was to investigate the neural mechanisms activated by noradrenaline injected into the LPBN to produce pressor responses and the influence of the pressor response elicited by noradrenaline injected into the LPBN on FURO + CAP-induced water and 1.8% NaCl intake in rats. Male Holtzman rats with bilateral stainless steel guide-cannulas implanted into LPBN were used. Injections of noradrenaline (40 nmol/0.2 μl) into the LPBN increased FURO + CAP-induced 1.8% NaCl intake (12.2 ± 3.5, vs., saline: 4.2 ± 0.8 ml/180 min), reduced water intake in the first 90 min of the test (10.5 ± 0.9 vs., saline 7 ± 1.5 ml/90 min) and strongly increased arterial pressure (50 ± 7, vs. saline: 1 ± 1 mmHg). Results from the present work also showed that unilateral or bilateral noradrenaline injections (20 nmol/0.2 μl) into LPBL or in misplaced areas produced a pressure response (43.3 ± 6.4; 41 ± 7 respectively vs., saline: 2.5 ± 2.5 mmHg) and bradycardia (-51 ± 12; -82 ± 15 respectively vs., saline 6 ± 3.6 bpm) suggesting that noradrenaline pressure responses do not depend specifically on LPBN injections. The blockade of the α1 adrenoceptors with prazosin injected intraperitoneally (i.p.) abolished the pressor response (9 ± 4 vs., saline: 1 ± 1 mmHg) and increased water (17 ± 2 ml/180 min) and 1.8% NaCl intake (21.8 ± 3.8 vs., saline: 4.2 ± 0.8 ml/180), respectively in rats treated with FURO + CAP combined with noradrenaline injected into the LPBN. Although prazosin i.p. reduced the pressor response, the sympathetic blockade with hexamethonium combined with vasopressin receptor blockade increased the pressor response to noradrenaline injected into the LPBN (88 ± 30 vs., noradrenaline response before the blockade: 51 ± 4 mmHg), suggesting that these mechanisms are not involved in the pressor response. The results suggest that the pressor response reduces FURO + CAP-induced water intake and the facilitation of NaCl intake produced by noradrenaline injected into the LPBN. The present study also used licking microstructure analysis to draw conclusions about the effects of LPBN noradrenaline on orosensory and postingestive signals that modify intake. Male Sprague Dawley rats were used and treated with FURO+CAP before saline or noradrenaline was injected bilaterally into the LPBN. Noradrenaline (40 nmol/0.2μl) increased NaCl intake (8.3 ± 0.7 vs. saline 4 ± 0.4 ml) and the number of licks 15-30 into the test (439.1 ± 167.4 vs. saline 60.2 ± 35.2) and number of bursts (11.2 ± 5.8 vs. saline 1.9 ± 0.9) for NaCl in the same period. Pre-treatment with prazosin i.p. (1mg/kg of body weight) increased NaCl intake (13.4 ± 0.8 ml), the number of licks/bin between 45 and 90 min into the test (274.1± 91.4), the number of bursts/bin 30-60 min into the test (13.4 ± 9.0) and also by burst size 45 min into the test (41 ± 11 vs. saline 0 ± 0). Prazosin also further increased water intake (10.4 ± 0.6 vs. saline 7.1± 0.5) and the number of bursts between 30 and 60 min into the test (7.7 ± 2.8 vs. saline 0 ± 0). However, injections that did not reach the LPBN, though not produce an effect on total intake of sodium and water in animals treated with FURO + CAP, when combined with prazosin i.p. also produced similar effects on microstructural analysis of licking and caused an increase in the number of licks/bin and bursts/bin for NaCl, suggesting a non specificity of noradrenaline in the LPBN combined with prazosin i.p. on microstructural analysis of licks. In order to evaluate the effects of activation of α2-adrenergic LPBN receptors without the interference of the pressor response on postingestive and orosensory signals, lick analysis for water and 1.8% NaCl was measured in male Sprague Dawley rats that were treated with FURO + CAP and given vehicle or moxonidine injections into the LPBN. Bilateral injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN increased FURO + CAP-induced total 1.8% NaCl intake (29.7 ± 7 vs. vehicle 4 ± 0.4 ml) and the number of licks/bin from 15 to 60 min (737 ± 267 vs. vehicle 0.0 ± 0.0 at 60 min). Moxonidine injections also increased the number of bursts/bin (36 ± 7 vs. vehicle 0 ± 0) number of licks/burst for 1.8% (26.5773 ± 8.1600 vs. vehicle 0 ± 0 at 60 minutes of the test). The results suggest that moxonidine into LPBN is affecting orosensory and postingestive signals for sodium intake. A stimulus that produces water intake and pressor response, but no hypertonic NaCl intake is the cholinergic stimulation with pilocarpine injected intraperitoneal (i.p.) or carbachol i.c.v. In this work it was also investigated whether the pressor response both pilocarpine i.p. as noradrenaline in the LPBN affects water and 1.8% NaCl intake induced by cholinergic activation. Further, it was investigated the effects moxonidine injections, an α2- adrenergic/imidazoline agonist, on water and 1.8% NaCl intake and the pressor response produced by pilocarpine i.p. Male Holtzman rats with bilateral stainless steel guide-cannulas implanted into LPBN were used. Pilocarpine (1 mg/kg) injected i.p. induced water intake (2.9 ± 0.3 ml/180 min), without affecting 0.3 M NaCl intake (0.5 ± 0.3 ml/180 min). Bilateral injections of noradrenaline (80 nmol/0.2 μl) into the LPBN combined with prazosin i.p. (1 mg/kg) increased pilocarpine i.p. induced water intake (6.3 ±1.7 ml/180 min) and 1.8% NaCl intake (14.7 ± 3.5 ml/180 min). LPBN noradrenaline injections combined with saline i.p. did not affect 1.8% NaCl (0.8 ±2.4 ml/180 min) and decreased water intake (0.8 ± 0.3 ml/180 min) induced by pilocarpine i.p. Prazosin i.p. did not modify 1.8% NaCl (4.8 ± 3.6 ml/180 min) or water intake (0.5 ± 0.3 ml/180 min) in rats treated with pilocarpine i.p. combined saline into the LPBN. Moreover, prazosin i.p. blocked the pressure response produced by noradrenaline injections into LPBN and also by pilocarpine i.p. (22 ± 4 vs., noradrenaline pressure response before saline i.p.: 60 ± 4 mmHg). In the present study, it was also observed that bilateral injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN combined with pilocarpine i.p. induced 1.8% NaCl intake (14.1 ± 5.5 ml/180 min, vs. vehicle LPBN: 0.8 ± 0.5 ml/180 min) but did not change water intake (7.6 ± 3.1 ml/180 min, vs. vehicle LPBN 3.8 ± 0.7 ml/180 min) or pressure response produced by pilocarpine i.p. (30 ± 3 mmHg, vs., control: 28 ± 5 mmHg). The results suggest that strong cholinergic-induced sodium intake arises when the inhibitory mechanisms are deactivated with noradrenaline injected into the LPBN combined with the blockade of pressor responses with prazosin i.p. or moxonidine into LPBN. As pilocarpine i.p., i.c.v. injections of carbachol cause an increase in blood pressure, produce a dipsogenic response, but no intake of 1.8% NaCl. However, the present results show that noradrenaline injections into LPBN combined with prazosin i.p. did not alter water intake (8.1 ± 2.4 vs., i.p. saline LPBN 9.4 ± 4.8 ml/180 min), but produced an increase in 1.8% NaCl intake (8.2 ± 3.9 vs., saline LPBN 1.9 ± 0.8 ml/180 min) induced by carbachol (4 nmol/1 μ) i.c.v. Further, it was possible to observe that prazosin was able to reduce noradrenaline pressure response (15 ± 7 vs., noradrenaline pressure response before saline i.p.: 50 ± 9 mmHg) injected into LPBL but it did not change carbachol i.c.v. pressure response (28 ± 6 vs., vs., carbachol pressure response before saline i.p.: 25 ± 6 mmHg). The results suggests LPBN blockade and probably, pressure response associated with cholinergic activation induces sodium intake. Therefore, the present results suggest that besides inducing water intake, cholinergic stimuli also stimulate sodium intake when the inhibitory mechanisms are blocked by α2 adrenergic receptor activation in the LPBN. The activation of the α2 adrenergic receptor in the LPBN might remove, at least partially, baroreceptor and/or cardiopulmonary signals and orosensory or postingestive signals, such as signals from oral receptors, stomach, liver and intestine receptors, that might influence on water and sodium intake, which causes an increase in sodium intake. However, the inhibitory action of the increase in arterial pressure is still present, at least partially, after the blockade of the α2 adrenergic receptors in the LPBN, as suggested by the facilitation of water and sodium intake after the treatment with prazosin. |
id |
SCAR_f35162d3a91dfdd14a7ba957e0aae4fd |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/1241 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Gasparini, SilviaMenani, José Vanderleihttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4780462A5http://lattes.cnpq.br/1284209984441589223ec8ea-ce94-41de-87ac-17b4ef707a632016-06-02T19:22:08Z2013-07-182016-06-02T19:22:08Z2013-05-17GASPARINI, Silvia. Controle da ingestão de água e sódio pelos mecanismos adrenérgicos do núcleo parabraquial lateral. 2013. 122 f. Tese (Doutorado em Ciências Biológicas) - Universidade Federal de São Carlos, São Carlos, 2013.https://repositorio.ufscar.br/handle/ufscar/1241The activation of α2-adrenoceptors with noradrenaline injected into the lateral parabrachial nucleus (LPBN) increases 1.8% NaCl intake in rats treated with the diuretic furosemide (FURO) combined with low dose of the angiotensin converting enzyme inhibitor captopril (CAP) subcutaneously (s.c.). In addition, noradrenaline injected into the LPBN increases arterial pressure and decreases water intake. In the present study, one of the objectives was to investigate the neural mechanisms activated by noradrenaline injected into the LPBN to produce pressor responses and the influence of the pressor response elicited by noradrenaline injected into the LPBN on FURO + CAP-induced water and 1.8% NaCl intake in rats. Male Holtzman rats with bilateral stainless steel guide-cannulas implanted into LPBN were used. Injections of noradrenaline (40 nmol/0.2 μl) into the LPBN increased FURO + CAP-induced 1.8% NaCl intake (12.2 ± 3.5, vs., saline: 4.2 ± 0.8 ml/180 min), reduced water intake in the first 90 min of the test (10.5 ± 0.9 vs., saline 7 ± 1.5 ml/90 min) and strongly increased arterial pressure (50 ± 7, vs. saline: 1 ± 1 mmHg). Results from the present work also showed that unilateral or bilateral noradrenaline injections (20 nmol/0.2 μl) into LPBL or in misplaced areas produced a pressure response (43.3 ± 6.4; 41 ± 7 respectively vs., saline: 2.5 ± 2.5 mmHg) and bradycardia (-51 ± 12; -82 ± 15 respectively vs., saline 6 ± 3.6 bpm) suggesting that noradrenaline pressure responses do not depend specifically on LPBN injections. The blockade of the α1 adrenoceptors with prazosin injected intraperitoneally (i.p.) abolished the pressor response (9 ± 4 vs., saline: 1 ± 1 mmHg) and increased water (17 ± 2 ml/180 min) and 1.8% NaCl intake (21.8 ± 3.8 vs., saline: 4.2 ± 0.8 ml/180), respectively in rats treated with FURO + CAP combined with noradrenaline injected into the LPBN. Although prazosin i.p. reduced the pressor response, the sympathetic blockade with hexamethonium combined with vasopressin receptor blockade increased the pressor response to noradrenaline injected into the LPBN (88 ± 30 vs., noradrenaline response before the blockade: 51 ± 4 mmHg), suggesting that these mechanisms are not involved in the pressor response. The results suggest that the pressor response reduces FURO + CAP-induced water intake and the facilitation of NaCl intake produced by noradrenaline injected into the LPBN. The present study also used licking microstructure analysis to draw conclusions about the effects of LPBN noradrenaline on orosensory and postingestive signals that modify intake. Male Sprague Dawley rats were used and treated with FURO+CAP before saline or noradrenaline was injected bilaterally into the LPBN. Noradrenaline (40 nmol/0.2μl) increased NaCl intake (8.3 ± 0.7 vs. saline 4 ± 0.4 ml) and the number of licks 15-30 into the test (439.1 ± 167.4 vs. saline 60.2 ± 35.2) and number of bursts (11.2 ± 5.8 vs. saline 1.9 ± 0.9) for NaCl in the same period. Pre-treatment with prazosin i.p. (1mg/kg of body weight) increased NaCl intake (13.4 ± 0.8 ml), the number of licks/bin between 45 and 90 min into the test (274.1± 91.4), the number of bursts/bin 30-60 min into the test (13.4 ± 9.0) and also by burst size 45 min into the test (41 ± 11 vs. saline 0 ± 0). Prazosin also further increased water intake (10.4 ± 0.6 vs. saline 7.1± 0.5) and the number of bursts between 30 and 60 min into the test (7.7 ± 2.8 vs. saline 0 ± 0). However, injections that did not reach the LPBN, though not produce an effect on total intake of sodium and water in animals treated with FURO + CAP, when combined with prazosin i.p. also produced similar effects on microstructural analysis of licking and caused an increase in the number of licks/bin and bursts/bin for NaCl, suggesting a non specificity of noradrenaline in the LPBN combined with prazosin i.p. on microstructural analysis of licks. In order to evaluate the effects of activation of α2-adrenergic LPBN receptors without the interference of the pressor response on postingestive and orosensory signals, lick analysis for water and 1.8% NaCl was measured in male Sprague Dawley rats that were treated with FURO + CAP and given vehicle or moxonidine injections into the LPBN. Bilateral injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN increased FURO + CAP-induced total 1.8% NaCl intake (29.7 ± 7 vs. vehicle 4 ± 0.4 ml) and the number of licks/bin from 15 to 60 min (737 ± 267 vs. vehicle 0.0 ± 0.0 at 60 min). Moxonidine injections also increased the number of bursts/bin (36 ± 7 vs. vehicle 0 ± 0) number of licks/burst for 1.8% (26.5773 ± 8.1600 vs. vehicle 0 ± 0 at 60 minutes of the test). The results suggest that moxonidine into LPBN is affecting orosensory and postingestive signals for sodium intake. A stimulus that produces water intake and pressor response, but no hypertonic NaCl intake is the cholinergic stimulation with pilocarpine injected intraperitoneal (i.p.) or carbachol i.c.v. In this work it was also investigated whether the pressor response both pilocarpine i.p. as noradrenaline in the LPBN affects water and 1.8% NaCl intake induced by cholinergic activation. Further, it was investigated the effects moxonidine injections, an α2- adrenergic/imidazoline agonist, on water and 1.8% NaCl intake and the pressor response produced by pilocarpine i.p. Male Holtzman rats with bilateral stainless steel guide-cannulas implanted into LPBN were used. Pilocarpine (1 mg/kg) injected i.p. induced water intake (2.9 ± 0.3 ml/180 min), without affecting 0.3 M NaCl intake (0.5 ± 0.3 ml/180 min). Bilateral injections of noradrenaline (80 nmol/0.2 μl) into the LPBN combined with prazosin i.p. (1 mg/kg) increased pilocarpine i.p. induced water intake (6.3 ±1.7 ml/180 min) and 1.8% NaCl intake (14.7 ± 3.5 ml/180 min). LPBN noradrenaline injections combined with saline i.p. did not affect 1.8% NaCl (0.8 ±2.4 ml/180 min) and decreased water intake (0.8 ± 0.3 ml/180 min) induced by pilocarpine i.p. Prazosin i.p. did not modify 1.8% NaCl (4.8 ± 3.6 ml/180 min) or water intake (0.5 ± 0.3 ml/180 min) in rats treated with pilocarpine i.p. combined saline into the LPBN. Moreover, prazosin i.p. blocked the pressure response produced by noradrenaline injections into LPBN and also by pilocarpine i.p. (22 ± 4 vs., noradrenaline pressure response before saline i.p.: 60 ± 4 mmHg). In the present study, it was also observed that bilateral injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN combined with pilocarpine i.p. induced 1.8% NaCl intake (14.1 ± 5.5 ml/180 min, vs. vehicle LPBN: 0.8 ± 0.5 ml/180 min) but did not change water intake (7.6 ± 3.1 ml/180 min, vs. vehicle LPBN 3.8 ± 0.7 ml/180 min) or pressure response produced by pilocarpine i.p. (30 ± 3 mmHg, vs., control: 28 ± 5 mmHg). The results suggest that strong cholinergic-induced sodium intake arises when the inhibitory mechanisms are deactivated with noradrenaline injected into the LPBN combined with the blockade of pressor responses with prazosin i.p. or moxonidine into LPBN. As pilocarpine i.p., i.c.v. injections of carbachol cause an increase in blood pressure, produce a dipsogenic response, but no intake of 1.8% NaCl. However, the present results show that noradrenaline injections into LPBN combined with prazosin i.p. did not alter water intake (8.1 ± 2.4 vs., i.p. saline LPBN 9.4 ± 4.8 ml/180 min), but produced an increase in 1.8% NaCl intake (8.2 ± 3.9 vs., saline LPBN 1.9 ± 0.8 ml/180 min) induced by carbachol (4 nmol/1 μ) i.c.v. Further, it was possible to observe that prazosin was able to reduce noradrenaline pressure response (15 ± 7 vs., noradrenaline pressure response before saline i.p.: 50 ± 9 mmHg) injected into LPBL but it did not change carbachol i.c.v. pressure response (28 ± 6 vs., vs., carbachol pressure response before saline i.p.: 25 ± 6 mmHg). The results suggests LPBN blockade and probably, pressure response associated with cholinergic activation induces sodium intake. Therefore, the present results suggest that besides inducing water intake, cholinergic stimuli also stimulate sodium intake when the inhibitory mechanisms are blocked by α2 adrenergic receptor activation in the LPBN. The activation of the α2 adrenergic receptor in the LPBN might remove, at least partially, baroreceptor and/or cardiopulmonary signals and orosensory or postingestive signals, such as signals from oral receptors, stomach, liver and intestine receptors, that might influence on water and sodium intake, which causes an increase in sodium intake. However, the inhibitory action of the increase in arterial pressure is still present, at least partially, after the blockade of the α2 adrenergic receptors in the LPBN, as suggested by the facilitation of water and sodium intake after the treatment with prazosin.A ativação de receptores adrenérgicos 2 com injeções bilaterais de noradrenalina no núcleo parabraquial lateral (NPBL) produz um grande aumento da ingestão de NaCl 1,8% em ratos tratados com o diurético furosemida (FURO) combinado com doses baixas do inibidor da enzima conversora de angiotensina captopril (CAP) subcutaneamente (s.c.). Além disso, noradrenalina injetada no NPBL aumenta a pressão arterial e diminui a ingestão de água. No presente estudo, um dos objetivos foi investigar os mecanismos neurais ativados pela noradrenalina injetada no NPBL para produzir resposta pressora e a influência da resposta pressora produzida por noradrenalina injetada no NPBL na ingestão de água e de NaCl 1,8% induzida por FURO + CAP. Ratos Holtzman com cânulas guia de aço inoxidável implantadas bilateralmente no NPBL foram utilizados. Injeções de noradrenalina (40 nmol/0,2 μl) no NPBL aumentaram a ingestão de NaCl 1,8% induzida por FURO + CAP (12,2 ± 3,5, vs., salina: 4,2 ± 0,8 ml/180 min), reduziram a ingestão de água nos primeiros 90 minutos do teste (10,5 ± 0,9 vs., salina 7 ± 1,5 ml/90 min) e aumentaram fortemente a pressão arterial (50 ± 7, vs. salina: 1 ± 1 mmHg). Resultados do presente trabalho também mostraram que injeções unilaterais ou bilaterais (20 nmol/0,2 μl) de noradrenalina no NPBL ou fora dessa área causaram uma potente resposta pressora (43 ± 6; 41 ± 7 respectivamente vs., salina: 3 ± 3 mmHg) e bradicardia (-51 ± 12; -82 ± 15 respectivamente vs., salina 6 ± 4 bpm), sugerindo que as respostas pressoras da noradrenalina não dependem de injeções especificamente no NPBL. O bloqueio de receptores adrenérgicos α1 com prazosin injetado intraperitonealmente (i.p.) aboliu a resposta pressora (9 ± 4 vs., salina: 1 ± 1 mmHg) e aumentou a ingestão de água (17 ± 2 ml/180 min) e de NaCl 1,8% (21,8 ± 3,8 ml/180), respectivamente, em ratos tratados com FURO + CAP combinado com noradrenalina no NPBL. Apesar de prazosin i.p. reduzir a resposta pressora, o bloqueio simpático com hexametônio combinado com bloqueio de receptor de vasopressina aumentou a resposta pressora da noradrenalina injetada no NPBL (88 ± 30 vs., resposta pressora da noradrenalina antes do bloqueio: 51 ± 4 mmHg), sugerindo que esses mecanismos não estão envolvidos na resposta pressora. Os resultados sugerem que a resposta pressora reduz a ingestão de água e a facilitação da ingestão de NaCl 1,8 % produzida noradrenalina injetada no NPBL. O presente estudo também utilizou análise microestrutural de lambidas para observar os efeitos da noradrenalina no NPBL em sinais orosensoriais e pós-ingestivos que modificam a ingestão. Ratos Sprague Dawley foram tratados com FURO+CAP antes das injeções bilaterais de salina ou noradrenalina no NPBL. Noradrenalina (40 nmol/0,2μl) aumentou a ingestão de NaCl (8,3 ± 0,7 vs., salina 4 ± 0,4 ml), o número de lambidas/intervalo dos 15 aos 30 minutos do teste (439,1 ± 167,4 vs., salina 60,2 ± 35,2) e o número de bursts/intervalo (11,2 ± 5,8 v.s. sal 1,9 ± 0,9) para NaCl no mesmo período. O pré-tratamento com prazosin (1mg/kg de peso corporal, i.p.) aumentou a ingestão de NaCl (13 ± 0,8 ml), o número de lambidas/intervalo entre os 45 e 90 min do teste (274 ± 91,4), o número de bursts/intervalo dos 30 aos 60 min do teste (13 ± 9,0) e também aumentou o tamanho do burst aos 45 min do teste (41 ± 11 vs., salina 0 ±0). Prazosin também aumentou a ingestão de água (10,4 ± 0,6 vs., salina 7,1± 0,5 ml/180 min) e o número de bursts entre 30 e 60 min do teste (7,7 ± 2,8 vs., salina 0 ± 0). Por outro lado, injeções que não alçaram o NPBL, apesar de não produzirem efeito na ingestão total de sódio e água em animais tratados com FURO + CAP, quando combinadas com prazosin i.p. também produziram efeitos semelhantes na análise microestrutural de lambidas e levaram a um aumento do número de lambidas/intervalo e bursts/intervalo para NaCl, sugerindo inespecificidade da ação da noradrenalina combinada com prazosin i.p. na análise microestrutural de lambidas. Com a finalidade de avaliar os efeitos da ativação de receptores adrenérgicos α2 do NPBL sem a interferência da resposta pressora nos sinais pós-ingestivos e orosensoriais, a análise de lambidas para água e NaCl 1,8% foi medida em ratos Sprague Dawley tratados com FURO + CAP e que receberam injeções bilaterais de veículo ou moxonidina no NPBL. Injeções bilaterais de moxonidina (0,5 nmol/0,2 μl) no NPBL aumentaram a ingestão total de NaCl 1,8% induzida por FURO + CAP (29,7 ± 7 vs., salina 4 ± 0,4 ml) e o número de lambidas/intervalo dos 15 aos 60 min do teste (737 ± 267 vs., salina 0 ± 0 aos 60 min). Injeções de moxonidina também produziram um aumento no número de bursts/intervalo (36 ± 7 vs., salina 0± 0) e no número de lambidas/burst para NaCl 1,8% (26 ± 8 vs., salina 0 ± 0 aos 60 min). Por outro lado, moxonidina não alterou a ingestão total de água, o número de lambidas/intervalo ou mesmo a análise microestrutural de lambidas para água. Os resultados sugerem que moxonidina injetada no NPBL afeta os sinais orosensoriais e pós-ingestivos para a ingestão de sódio. Um estímulo que produz significativa ingestão de água, mas nenhuma ingestão de NaCl hipertônico e que também produz uma resposta pressora é a estimulação colinérgica com injeção intraperitoneal (i.p.) de pilocarpina ou carbacol i.c.v. No presente trabalho também foi investigado se a resposta pressora tanto de pilocarpina i.p. como de noradrenalina no NPBL afetaria a ingestão de água e NaCl 1,8 % induzida por ativação colinérgica. Ainda, foram investigados os efeitos das injeções de moxonidina, um agonista adrenérgico α2/imidazólio, na ingestão de água e de NaCl 1,8% e na resposta pressora produzida por pilocarpina i.p. Ratos Holtzman com implante de cânulas de aço inoxidável no NPBL foram utilizados. Pilocarpina (1 mg/kg de peso corporal) injetada i.p. induziu ingestão de água (2,9 ± 0,3 ml/180 min), sem alterar a ingestão de NaCl 1,8% (0,5 ± 0,3 ml/180 min). Injeções bilaterais de noradrenalina (80 nmol/0,2 μl) no NPBL combinadas com prazosin (1 mg/kg) i.p aumentaram a ingestão de água (6,3 ±1,7 ml/180 min) e a ingestão de NaCl 1,8% (14,7 ± 3,5 ml/180 min). Injeções de noradrenalina no NPBL combinadas com salina i.p. não alteraram a ingestão de NaCl 1,8% (0,8 ± 2,4 ml/180 min) e diminuíram a ingestão de água (0,8 ± 0,3 ml/180 min) induzida por pilocarpina i.p. Prazosin i.p. não modificou a ingestão de NaCl 1,8% (4,8 ± 3,6 ml/180 min) ou a ingestão de água (0,5 ± 0,3 ml/180 min) em ratos tratados com pilocarpina i.p. combinada com salina no NPBL. Além disso, prazosin i.p. foi capaz de reduzir as respostas pressoras produzidas por noradrenalina injetada no NPBL e também por pilocarpina i.p. (22 ± 4 vs., resposta pressora da noradrenalina antes de salina i.p.: 60 ± 4 mmHg). No presente estudo, também foi observado que injeções bilaterais de moxonidina (0,5 nmol/0,2 μl) no NPBL combinadas com pilocarpina (1 mg/kg) injetada i.p. estimularam a ingestão de NaCl 1,8 % (14,1 ± 5,5 ml/180 min, vs., veículo no NPBL: 0,8 ± 0,5 ml/180 min), sem alteração da ingestão de água (7,6 ± 3,1 ml/180 min, vs., veículo no NPBL: 3,8 ± 0,7 ml/180 min) ou da resposta pressora produzida pilocarpina i.p. (30 ± 3 mmHg, vs., controle: 28 ± 5 mmHg). Os resultados sugerem que o apetite ao sódio ocorre quando a ativação colinérgica central é combinada com desativação dos mecanismos inibitórios pelas injeções de noradrenalina no NPBL combinada com prazosin i.p. ou apenas de moxonidina no NPBL Assim como a pilocarpina i.p., injeções de carbacol i.c.v. causam um aumento da pressão arterial, produz uma resposta dipsogênica, mas nenhuma ingestão de NaCl 1,8%. As injeções de noradrenalina no NPBL combinada com prazosin i.p. não alteraram a ingestão de água (8,1 ± 2,4 vs., salina NPBL 9,4 ± 4,8 ml/180 min), mas produziram um aumento da ingestão de NaCl 1,8% (8,2 ± 3,9 vs., salina NPBL 1,9 ± 0,8 ml/180 min) induzida por carbacol (4 nmol/1 μl) i.c.v. Além disso, pôde-se observar que o prazosin foi capaz de reduzir a resposta pressora produzida por noradrenalina (15 ± 7 vs., resposta pressora da noradrenalina antes de salina i.p.: 50 ± 9 mmHg) injetada no NPBL, mas não alterou a resposta pressora do carbacol i.c.v. (28 ± 6 vs., resposta do carbacol antes de salina i.p.: 25 ± 6 mmHg). Os resultados sugerem que o bloqueio do NPBL e provavelmente, da resposta pressora, associada à ativação colinérgica induz o apetite ao sódio. Portanto, os resultados do presente trabalho sugerem que estímulos colinérgicos, além de estimular a ingestão de água também podem também estimular a ingestão de sódio quando ocorre o bloqueio de mecanismos inibitórios da ingestão de sódio pela ativação de receptores α2 adrenérgicos do NPBL. Com a ativação de receptores α2 adrenérgicos do NPBL haveria a remoção, pelo menos parcial, de sinais provenientes de barorreceptores e/ou receptores cardiopulmonares, sinais orosensoriais ou sinais pós-ingestivos, como sinais provenientes de receptores orais, do estômago, fígado e intestino, que influenciam na ingestão de água e de sódio, o que acarreta num aumento da ingestão de sódio. Porém, as influências inibitórias do aumento de pressão arterial sobre a ingestão de água e sódio ainda são mantidas, pelo menos parcialmente, após a ativação de receptores α2 adrenérgicos do NPBL, como demonstra a facilitação da ingestão de água e sódio após o tratamento com prazosin i.p.Universidade Federal de Minas Geraisapplication/pdfporUniversidade Federal de São CarlosPrograma Interinstitucional de Pós-Graduação em Ciências Fisiológicas - PIPGCFUFSCarBRFisiologiaApetite ao sódioNoradrenalinaPressão arterialCIENCIAS BIOLOGICAS::FISIOLOGIAControle da ingestão de água e sódio pelos mecanismos adrenérgicos do núcleo parabraquial lateralinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-1-1db436073-b604-4114-a5c8-76b09c26d760info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL5254.pdfapplication/pdf10773424https://repositorio.ufscar.br/bitstream/ufscar/1241/1/5254.pdf0891460fc6eddd61825c1a3a7a07614eMD51TEXT5254.pdf.txt5254.pdf.txtExtracted texttext/plain0https://repositorio.ufscar.br/bitstream/ufscar/1241/2/5254.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD52THUMBNAIL5254.pdf.jpg5254.pdf.jpgIM Thumbnailimage/jpeg5833https://repositorio.ufscar.br/bitstream/ufscar/1241/3/5254.pdf.jpg99a838c2be14eecc6a4b8045072ed18bMD53ufscar/12412023-09-18 18:31:28.886oai:repositorio.ufscar.br:ufscar/1241Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:28Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Controle da ingestão de água e sódio pelos mecanismos adrenérgicos do núcleo parabraquial lateral |
title |
Controle da ingestão de água e sódio pelos mecanismos adrenérgicos do núcleo parabraquial lateral |
spellingShingle |
Controle da ingestão de água e sódio pelos mecanismos adrenérgicos do núcleo parabraquial lateral Gasparini, Silvia Fisiologia Apetite ao sódio Noradrenalina Pressão arterial CIENCIAS BIOLOGICAS::FISIOLOGIA |
title_short |
Controle da ingestão de água e sódio pelos mecanismos adrenérgicos do núcleo parabraquial lateral |
title_full |
Controle da ingestão de água e sódio pelos mecanismos adrenérgicos do núcleo parabraquial lateral |
title_fullStr |
Controle da ingestão de água e sódio pelos mecanismos adrenérgicos do núcleo parabraquial lateral |
title_full_unstemmed |
Controle da ingestão de água e sódio pelos mecanismos adrenérgicos do núcleo parabraquial lateral |
title_sort |
Controle da ingestão de água e sódio pelos mecanismos adrenérgicos do núcleo parabraquial lateral |
author |
Gasparini, Silvia |
author_facet |
Gasparini, Silvia |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/1284209984441589 |
dc.contributor.author.fl_str_mv |
Gasparini, Silvia |
dc.contributor.advisor1.fl_str_mv |
Menani, José Vanderlei |
dc.contributor.advisor1Lattes.fl_str_mv |
http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4780462A5 |
dc.contributor.authorID.fl_str_mv |
223ec8ea-ce94-41de-87ac-17b4ef707a63 |
contributor_str_mv |
Menani, José Vanderlei |
dc.subject.por.fl_str_mv |
Fisiologia Apetite ao sódio Noradrenalina Pressão arterial |
topic |
Fisiologia Apetite ao sódio Noradrenalina Pressão arterial CIENCIAS BIOLOGICAS::FISIOLOGIA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS BIOLOGICAS::FISIOLOGIA |
description |
The activation of α2-adrenoceptors with noradrenaline injected into the lateral parabrachial nucleus (LPBN) increases 1.8% NaCl intake in rats treated with the diuretic furosemide (FURO) combined with low dose of the angiotensin converting enzyme inhibitor captopril (CAP) subcutaneously (s.c.). In addition, noradrenaline injected into the LPBN increases arterial pressure and decreases water intake. In the present study, one of the objectives was to investigate the neural mechanisms activated by noradrenaline injected into the LPBN to produce pressor responses and the influence of the pressor response elicited by noradrenaline injected into the LPBN on FURO + CAP-induced water and 1.8% NaCl intake in rats. Male Holtzman rats with bilateral stainless steel guide-cannulas implanted into LPBN were used. Injections of noradrenaline (40 nmol/0.2 μl) into the LPBN increased FURO + CAP-induced 1.8% NaCl intake (12.2 ± 3.5, vs., saline: 4.2 ± 0.8 ml/180 min), reduced water intake in the first 90 min of the test (10.5 ± 0.9 vs., saline 7 ± 1.5 ml/90 min) and strongly increased arterial pressure (50 ± 7, vs. saline: 1 ± 1 mmHg). Results from the present work also showed that unilateral or bilateral noradrenaline injections (20 nmol/0.2 μl) into LPBL or in misplaced areas produced a pressure response (43.3 ± 6.4; 41 ± 7 respectively vs., saline: 2.5 ± 2.5 mmHg) and bradycardia (-51 ± 12; -82 ± 15 respectively vs., saline 6 ± 3.6 bpm) suggesting that noradrenaline pressure responses do not depend specifically on LPBN injections. The blockade of the α1 adrenoceptors with prazosin injected intraperitoneally (i.p.) abolished the pressor response (9 ± 4 vs., saline: 1 ± 1 mmHg) and increased water (17 ± 2 ml/180 min) and 1.8% NaCl intake (21.8 ± 3.8 vs., saline: 4.2 ± 0.8 ml/180), respectively in rats treated with FURO + CAP combined with noradrenaline injected into the LPBN. Although prazosin i.p. reduced the pressor response, the sympathetic blockade with hexamethonium combined with vasopressin receptor blockade increased the pressor response to noradrenaline injected into the LPBN (88 ± 30 vs., noradrenaline response before the blockade: 51 ± 4 mmHg), suggesting that these mechanisms are not involved in the pressor response. The results suggest that the pressor response reduces FURO + CAP-induced water intake and the facilitation of NaCl intake produced by noradrenaline injected into the LPBN. The present study also used licking microstructure analysis to draw conclusions about the effects of LPBN noradrenaline on orosensory and postingestive signals that modify intake. Male Sprague Dawley rats were used and treated with FURO+CAP before saline or noradrenaline was injected bilaterally into the LPBN. Noradrenaline (40 nmol/0.2μl) increased NaCl intake (8.3 ± 0.7 vs. saline 4 ± 0.4 ml) and the number of licks 15-30 into the test (439.1 ± 167.4 vs. saline 60.2 ± 35.2) and number of bursts (11.2 ± 5.8 vs. saline 1.9 ± 0.9) for NaCl in the same period. Pre-treatment with prazosin i.p. (1mg/kg of body weight) increased NaCl intake (13.4 ± 0.8 ml), the number of licks/bin between 45 and 90 min into the test (274.1± 91.4), the number of bursts/bin 30-60 min into the test (13.4 ± 9.0) and also by burst size 45 min into the test (41 ± 11 vs. saline 0 ± 0). Prazosin also further increased water intake (10.4 ± 0.6 vs. saline 7.1± 0.5) and the number of bursts between 30 and 60 min into the test (7.7 ± 2.8 vs. saline 0 ± 0). However, injections that did not reach the LPBN, though not produce an effect on total intake of sodium and water in animals treated with FURO + CAP, when combined with prazosin i.p. also produced similar effects on microstructural analysis of licking and caused an increase in the number of licks/bin and bursts/bin for NaCl, suggesting a non specificity of noradrenaline in the LPBN combined with prazosin i.p. on microstructural analysis of licks. In order to evaluate the effects of activation of α2-adrenergic LPBN receptors without the interference of the pressor response on postingestive and orosensory signals, lick analysis for water and 1.8% NaCl was measured in male Sprague Dawley rats that were treated with FURO + CAP and given vehicle or moxonidine injections into the LPBN. Bilateral injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN increased FURO + CAP-induced total 1.8% NaCl intake (29.7 ± 7 vs. vehicle 4 ± 0.4 ml) and the number of licks/bin from 15 to 60 min (737 ± 267 vs. vehicle 0.0 ± 0.0 at 60 min). Moxonidine injections also increased the number of bursts/bin (36 ± 7 vs. vehicle 0 ± 0) number of licks/burst for 1.8% (26.5773 ± 8.1600 vs. vehicle 0 ± 0 at 60 minutes of the test). The results suggest that moxonidine into LPBN is affecting orosensory and postingestive signals for sodium intake. A stimulus that produces water intake and pressor response, but no hypertonic NaCl intake is the cholinergic stimulation with pilocarpine injected intraperitoneal (i.p.) or carbachol i.c.v. In this work it was also investigated whether the pressor response both pilocarpine i.p. as noradrenaline in the LPBN affects water and 1.8% NaCl intake induced by cholinergic activation. Further, it was investigated the effects moxonidine injections, an α2- adrenergic/imidazoline agonist, on water and 1.8% NaCl intake and the pressor response produced by pilocarpine i.p. Male Holtzman rats with bilateral stainless steel guide-cannulas implanted into LPBN were used. Pilocarpine (1 mg/kg) injected i.p. induced water intake (2.9 ± 0.3 ml/180 min), without affecting 0.3 M NaCl intake (0.5 ± 0.3 ml/180 min). Bilateral injections of noradrenaline (80 nmol/0.2 μl) into the LPBN combined with prazosin i.p. (1 mg/kg) increased pilocarpine i.p. induced water intake (6.3 ±1.7 ml/180 min) and 1.8% NaCl intake (14.7 ± 3.5 ml/180 min). LPBN noradrenaline injections combined with saline i.p. did not affect 1.8% NaCl (0.8 ±2.4 ml/180 min) and decreased water intake (0.8 ± 0.3 ml/180 min) induced by pilocarpine i.p. Prazosin i.p. did not modify 1.8% NaCl (4.8 ± 3.6 ml/180 min) or water intake (0.5 ± 0.3 ml/180 min) in rats treated with pilocarpine i.p. combined saline into the LPBN. Moreover, prazosin i.p. blocked the pressure response produced by noradrenaline injections into LPBN and also by pilocarpine i.p. (22 ± 4 vs., noradrenaline pressure response before saline i.p.: 60 ± 4 mmHg). In the present study, it was also observed that bilateral injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN combined with pilocarpine i.p. induced 1.8% NaCl intake (14.1 ± 5.5 ml/180 min, vs. vehicle LPBN: 0.8 ± 0.5 ml/180 min) but did not change water intake (7.6 ± 3.1 ml/180 min, vs. vehicle LPBN 3.8 ± 0.7 ml/180 min) or pressure response produced by pilocarpine i.p. (30 ± 3 mmHg, vs., control: 28 ± 5 mmHg). The results suggest that strong cholinergic-induced sodium intake arises when the inhibitory mechanisms are deactivated with noradrenaline injected into the LPBN combined with the blockade of pressor responses with prazosin i.p. or moxonidine into LPBN. As pilocarpine i.p., i.c.v. injections of carbachol cause an increase in blood pressure, produce a dipsogenic response, but no intake of 1.8% NaCl. However, the present results show that noradrenaline injections into LPBN combined with prazosin i.p. did not alter water intake (8.1 ± 2.4 vs., i.p. saline LPBN 9.4 ± 4.8 ml/180 min), but produced an increase in 1.8% NaCl intake (8.2 ± 3.9 vs., saline LPBN 1.9 ± 0.8 ml/180 min) induced by carbachol (4 nmol/1 μ) i.c.v. Further, it was possible to observe that prazosin was able to reduce noradrenaline pressure response (15 ± 7 vs., noradrenaline pressure response before saline i.p.: 50 ± 9 mmHg) injected into LPBL but it did not change carbachol i.c.v. pressure response (28 ± 6 vs., vs., carbachol pressure response before saline i.p.: 25 ± 6 mmHg). The results suggests LPBN blockade and probably, pressure response associated with cholinergic activation induces sodium intake. Therefore, the present results suggest that besides inducing water intake, cholinergic stimuli also stimulate sodium intake when the inhibitory mechanisms are blocked by α2 adrenergic receptor activation in the LPBN. The activation of the α2 adrenergic receptor in the LPBN might remove, at least partially, baroreceptor and/or cardiopulmonary signals and orosensory or postingestive signals, such as signals from oral receptors, stomach, liver and intestine receptors, that might influence on water and sodium intake, which causes an increase in sodium intake. However, the inhibitory action of the increase in arterial pressure is still present, at least partially, after the blockade of the α2 adrenergic receptors in the LPBN, as suggested by the facilitation of water and sodium intake after the treatment with prazosin. |
publishDate |
2013 |
dc.date.available.fl_str_mv |
2013-07-18 2016-06-02T19:22:08Z |
dc.date.issued.fl_str_mv |
2013-05-17 |
dc.date.accessioned.fl_str_mv |
2016-06-02T19:22:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GASPARINI, Silvia. Controle da ingestão de água e sódio pelos mecanismos adrenérgicos do núcleo parabraquial lateral. 2013. 122 f. Tese (Doutorado em Ciências Biológicas) - Universidade Federal de São Carlos, São Carlos, 2013. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/1241 |
identifier_str_mv |
GASPARINI, Silvia. Controle da ingestão de água e sódio pelos mecanismos adrenérgicos do núcleo parabraquial lateral. 2013. 122 f. Tese (Doutorado em Ciências Biológicas) - Universidade Federal de São Carlos, São Carlos, 2013. |
url |
https://repositorio.ufscar.br/handle/ufscar/1241 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
-1 -1 |
dc.relation.authority.fl_str_mv |
db436073-b604-4114-a5c8-76b09c26d760 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas - PIPGCF |
dc.publisher.initials.fl_str_mv |
UFSCar |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/1241/1/5254.pdf https://repositorio.ufscar.br/bitstream/ufscar/1241/2/5254.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/1241/3/5254.pdf.jpg |
bitstream.checksum.fl_str_mv |
0891460fc6eddd61825c1a3a7a07614e d41d8cd98f00b204e9800998ecf8427e 99a838c2be14eecc6a4b8045072ed18b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715509130035200 |