Magnetic fields as a tool to control superconducting devices

Detalhes bibliográficos
Autor(a) principal: Chaves, Davi Araujo Dalbuquerque
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/18978
Resumo: The quantum nature and dissipation-free flow of electric currents in superconducting materials have taken a central role as technological developments push forward the necessity of new methods for processing and dealing with the amount of information generated by modern consumption patterns. To enable such superconducting technologies, it is necessary to understand the underlying Physics dictating the behavior of superconductors, unveiling or allowing to control phenomena useful for applications. Due to its intrinsic relationship with the superconducting state, applied magnetic fields emerge as natural candidates for manipulating the properties of superconducting materials. These ideas motivated the research conducted in the context of this thesis, which is structured as a collection of studies in which different superconducting systems are subjected to magnetic fields, aiming to investigate and control their behavior. In the first set of results presented, the temperature of a plain Nb thin film is reduced under different magnetic field cooling conditions. Then, flux penetration patterns are studied by magneto-optical imaging (MOI). The results demonstrate how the applied field spatial distribution and direction influence the ability of a superconducting device to transport electrical currents without dissipation, without the need for any complex nanofabrication steps. Such influence is due to the emergence of different trapped flux configurations in the superconductor, either facilitating or hampering further magnetic flux penetration, effectively reducing or increasing the effective maximum current the film can carry in the superconducting state. It is true, however, that for most applications in superconducting technology, nanofabrication is required, in some cases demanding the creation of regions of suppressed superconductivity called weak-links. A different study investigates normal and superconducting state properties of Nb films patterned with a single weak-link fabricated by focused ion beam (FIB) milling. The investigation quantifies the suppression of superconducting properties and the modification of the normal flow of electrons, finding that these are linked by the degree of impurities introduced by the nanofabrication. One interesting effect is the emergence of a local peak in the magnetic field-dependent magnetization of the patterned samples. In a separate work, we employ MOI to investigate these specimens under applied fields near such local peak. This study reveals that the patterned films undergo a behavior transformation from a weak-link to a strong-link, enabling more current to flow between the unpatterned Nb regions. Quantifying the MOI data allows us to understand the flux dynamics responsible for the peak effect. In a different study, the properties of a dc superconducting quantum interference device (SQUID) presenting two parallel weak-links comprised of asymmetric constrictions of a superconducting amorphous MoGe film were investigated. It is possible to influence the behavior of such devices by modifying their geometry. The study demonstrates how understanding the relationship between the device and applied magnetic fields and currents allows preparing the SQUID in multiple energy states, readable at the same field value, thus allowing its use as a multilevel memory element. Finally, we aim to consolidate MOI as a reliable tool to quantitatively study the behavior of superconducting films under ac magnetic fields. For that, we investigate the independence of the thermomagnetic history on the ac magnetic susceptibility response of an amorphous MoSi film. This study relies on the possibility of emulating ac effects by cycling an applied dc field. The results are successfully compared with standard SQUID-based magnetometry while taking advantage of the local spatial resolution of MOI to reveal the quantitative behavior of individual flux avalanche events and the presence of zones of flux annihilation at interfaces between positive and negative flux regions.
id SCAR_f7fd5fd4276a213db01cc6981f47206b
oai_identifier_str oai:repositorio.ufscar.br:ufscar/18978
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Chaves, Davi Araujo DalbuquerqueMotta, Mayconhttp://lattes.cnpq.br/8340540626164812Ortiz, Wilson Aireshttp://lattes.cnpq.br/0241177338066307http://lattes.cnpq.br/5212502063961840https://orcid.org/0000-0001-6998-3154https://orcid.org/0000-0002-5494-7705https://orcid.org/0000-0002-7778-09792023-12-04T18:02:32Z2023-12-04T18:02:32Z2023-10-16CHAVES, Davi Araujo Dalbuquerque. Magnetic fields as a tool to control superconducting devices. 2023. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18978.https://repositorio.ufscar.br/handle/ufscar/18978The quantum nature and dissipation-free flow of electric currents in superconducting materials have taken a central role as technological developments push forward the necessity of new methods for processing and dealing with the amount of information generated by modern consumption patterns. To enable such superconducting technologies, it is necessary to understand the underlying Physics dictating the behavior of superconductors, unveiling or allowing to control phenomena useful for applications. Due to its intrinsic relationship with the superconducting state, applied magnetic fields emerge as natural candidates for manipulating the properties of superconducting materials. These ideas motivated the research conducted in the context of this thesis, which is structured as a collection of studies in which different superconducting systems are subjected to magnetic fields, aiming to investigate and control their behavior. In the first set of results presented, the temperature of a plain Nb thin film is reduced under different magnetic field cooling conditions. Then, flux penetration patterns are studied by magneto-optical imaging (MOI). The results demonstrate how the applied field spatial distribution and direction influence the ability of a superconducting device to transport electrical currents without dissipation, without the need for any complex nanofabrication steps. Such influence is due to the emergence of different trapped flux configurations in the superconductor, either facilitating or hampering further magnetic flux penetration, effectively reducing or increasing the effective maximum current the film can carry in the superconducting state. It is true, however, that for most applications in superconducting technology, nanofabrication is required, in some cases demanding the creation of regions of suppressed superconductivity called weak-links. A different study investigates normal and superconducting state properties of Nb films patterned with a single weak-link fabricated by focused ion beam (FIB) milling. The investigation quantifies the suppression of superconducting properties and the modification of the normal flow of electrons, finding that these are linked by the degree of impurities introduced by the nanofabrication. One interesting effect is the emergence of a local peak in the magnetic field-dependent magnetization of the patterned samples. In a separate work, we employ MOI to investigate these specimens under applied fields near such local peak. This study reveals that the patterned films undergo a behavior transformation from a weak-link to a strong-link, enabling more current to flow between the unpatterned Nb regions. Quantifying the MOI data allows us to understand the flux dynamics responsible for the peak effect. In a different study, the properties of a dc superconducting quantum interference device (SQUID) presenting two parallel weak-links comprised of asymmetric constrictions of a superconducting amorphous MoGe film were investigated. It is possible to influence the behavior of such devices by modifying their geometry. The study demonstrates how understanding the relationship between the device and applied magnetic fields and currents allows preparing the SQUID in multiple energy states, readable at the same field value, thus allowing its use as a multilevel memory element. Finally, we aim to consolidate MOI as a reliable tool to quantitatively study the behavior of superconducting films under ac magnetic fields. For that, we investigate the independence of the thermomagnetic history on the ac magnetic susceptibility response of an amorphous MoSi film. This study relies on the possibility of emulating ac effects by cycling an applied dc field. The results are successfully compared with standard SQUID-based magnetometry while taking advantage of the local spatial resolution of MOI to reveal the quantitative behavior of individual flux avalanche events and the presence of zones of flux annihilation at interfaces between positive and negative flux regions.A natureza quântica e o transporte de correntes elétricas sem dissipação em materiais supercondutores assumiram papel central à medida que desenvolvimentos tecnológicos impulsionaram a necessidade de novos métodos para processar a grande quantidade de informação gerada pelos padrões de consumo atuais. Para fomentar tais tecnologias supercondutoras, é necessário entender a Física por trás do comportamento de supercondutores, revelando e permitindo controlar fenômenos úteis para aplicações. Devido à sua relação intrínseca com o estado supercondutor, campos magnéticos são candidatos naturais para manipular as propriedades de materiais supercondutores. Essas ideias motivaram a pesquisa conduzida no contexto desta tese, a qual é estruturada na forma de uma coletânea de estudos nos quais diferentes sistemas supercondutores são submetidos a campos magnéticos visando investigar e controlar suas propriedades. No primeiro conjunto de resultados apresentados, a temperatura de um filme fino de Nb prístino é reduzida sob diferentes configurações de campo magnético aplicado. Então, os padrões de penetração de fluxo são estudados por imageamento magneto-ótico (MOI). Os resultados demonstram como a distribuição espacial e a direção do campo aplicado influenciam a habilidade de um dispositivo supercondutor de transportar correntes elétricas sem dissipação, removendo a necessidade de processos complexos de nanofabricação. Tal influência é devida à diferentes configurações de fluxo aprisionado no supercondutor, que facilitam ou dificultam mais penetração de fluxo, efetivamente reduzindo ou aumentando a máxima corrente efetiva que o filme pode transportar no estado supercondutor. É verdade, contudo, que a maior parte das aplicações em tecnologia supercondutora necessita de nanofabricação e, em alguns casos, da criação de regiões de propriedades supercondutoras suprimidas chamadas de elos-fracos. Um segundo estudo investiga as propriedades dos estados normal e supercondutor de filmes de Nb contendo um único elo-fraco fabricado pela técnica de escavação por feixe de íons focado. A investigação quantifica a supressão das propriedades supercondutoras e a modificação no fluxo de elétrons no estado normal, demonstrando que estes são conectados pelo grau de impurezas introduzido pela nanofabricação. Um efeito interessante é o aparecimento de um pico local na magnetização em função do campo magnético aplicado para as amostras que contêm o elo-fraco. Em um trabalho separado, nós empregamos MOI para investigar tais amostras sob campos aplicados próximos a esse pico. O estudo revela que os filmes que contém o elo-fraco experienciam uma transformação, com a área nanofabricada passando a se comportar como um elo-forte que possibilita uma maior passagem de corrente entre as regiões inalteradas do filme de Nb. Quantificando os dados de MOI, fomos capazes de entender a dinâmica de fluxo magnética responsável por tal efeito. Em um diferente estudo, investigamos as propriedades de um dispositivo supercondutor de interferência quântica dc (SQUID) contendo dois elos-fracos em paralelo constituídos por constrições de um filme supercondutor de MoGe amorfo. O comportamento de tais dispositivos pode ser alterado por modificações em sua geometria. Nessa investigação, buscou-se entender a relação entre o dispositivo e campos magnéticos e correntes, que permite preparar o SQUID em múltiplos estados de energia que podem ser lidos no mesmo valor de campo, permitindo, assim, seu uso como um elemento de memória multinível. Finalmente, demonstou-se que a técnica de MOI é uma ferramenta confiável para estudar quantitativamente o comportamento de filmes supercondutores sob a influência de campos magnéticos ac. Para isso, investigamos a independência da susceptibilidade magnética ac de filmes de MoSi amorfos com sua história termomagnética. Esse estudo depende da possibilidade de emular efeitos ac variando um campo aplicado dc. Os resultados são comparados com outros obtidos por magnetometria SQUID padrão, enquanto tomamos vantagem da resolução espacial local do MOI para revelar o comportamento quantitativo de eventos de avalanche de fluxo individuais e a presença de zonas de aniquilação na interface entre regiões de penetração de fluxo positivo e negativo.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Física - PPGFUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSuperconductivityMagnetic fieldSuperconducting technologyMagneto-optical imagingSupercondutividadeCampo magnéticoTecnologia supercondutoraImageamento magneto-óticoCIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA::SUPERCONDUTIVIDADEMagnetic fields as a tool to control superconducting devicesCampos magnéticos como ferramenta para controlar dispositivos supercondutoresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALThesis_Davi_FinalVersion.pdfThesis_Davi_FinalVersion.pdfTeseapplication/pdf50254637https://repositorio.ufscar.br/bitstream/ufscar/18978/2/Thesis_Davi_FinalVersion.pdf75dd56047291e74a6733eed5ede465f9MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repositorio.ufscar.br/bitstream/ufscar/18978/3/license_rdff337d95da1fce0a22c77480e5e9a7aecMD53TEXTThesis_Davi_FinalVersion.pdf.txtThesis_Davi_FinalVersion.pdf.txtExtracted texttext/plain479009https://repositorio.ufscar.br/bitstream/ufscar/18978/4/Thesis_Davi_FinalVersion.pdf.txt23e7527b3a48cfd0355ea9c228ffbc67MD54ufscar/189782024-05-14 17:23:49.719oai:repositorio.ufscar.br:ufscar/18978Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222024-05-14T17:23:49Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Magnetic fields as a tool to control superconducting devices
dc.title.alternative.por.fl_str_mv Campos magnéticos como ferramenta para controlar dispositivos supercondutores
title Magnetic fields as a tool to control superconducting devices
spellingShingle Magnetic fields as a tool to control superconducting devices
Chaves, Davi Araujo Dalbuquerque
Superconductivity
Magnetic field
Superconducting technology
Magneto-optical imaging
Supercondutividade
Campo magnético
Tecnologia supercondutora
Imageamento magneto-ótico
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA::SUPERCONDUTIVIDADE
title_short Magnetic fields as a tool to control superconducting devices
title_full Magnetic fields as a tool to control superconducting devices
title_fullStr Magnetic fields as a tool to control superconducting devices
title_full_unstemmed Magnetic fields as a tool to control superconducting devices
title_sort Magnetic fields as a tool to control superconducting devices
author Chaves, Davi Araujo Dalbuquerque
author_facet Chaves, Davi Araujo Dalbuquerque
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/5212502063961840
dc.contributor.authororcid.por.fl_str_mv https://orcid.org/0000-0001-6998-3154
dc.contributor.advisor1orcid.por.fl_str_mv https://orcid.org/0000-0002-5494-7705
dc.contributor.advisor-co1orcid.por.fl_str_mv https://orcid.org/0000-0002-7778-0979
dc.contributor.author.fl_str_mv Chaves, Davi Araujo Dalbuquerque
dc.contributor.advisor1.fl_str_mv Motta, Maycon
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8340540626164812
dc.contributor.advisor-co1.fl_str_mv Ortiz, Wilson Aires
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/0241177338066307
contributor_str_mv Motta, Maycon
Ortiz, Wilson Aires
dc.subject.eng.fl_str_mv Superconductivity
Magnetic field
Superconducting technology
Magneto-optical imaging
topic Superconductivity
Magnetic field
Superconducting technology
Magneto-optical imaging
Supercondutividade
Campo magnético
Tecnologia supercondutora
Imageamento magneto-ótico
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA::SUPERCONDUTIVIDADE
dc.subject.por.fl_str_mv Supercondutividade
Campo magnético
Tecnologia supercondutora
Imageamento magneto-ótico
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA::SUPERCONDUTIVIDADE
description The quantum nature and dissipation-free flow of electric currents in superconducting materials have taken a central role as technological developments push forward the necessity of new methods for processing and dealing with the amount of information generated by modern consumption patterns. To enable such superconducting technologies, it is necessary to understand the underlying Physics dictating the behavior of superconductors, unveiling or allowing to control phenomena useful for applications. Due to its intrinsic relationship with the superconducting state, applied magnetic fields emerge as natural candidates for manipulating the properties of superconducting materials. These ideas motivated the research conducted in the context of this thesis, which is structured as a collection of studies in which different superconducting systems are subjected to magnetic fields, aiming to investigate and control their behavior. In the first set of results presented, the temperature of a plain Nb thin film is reduced under different magnetic field cooling conditions. Then, flux penetration patterns are studied by magneto-optical imaging (MOI). The results demonstrate how the applied field spatial distribution and direction influence the ability of a superconducting device to transport electrical currents without dissipation, without the need for any complex nanofabrication steps. Such influence is due to the emergence of different trapped flux configurations in the superconductor, either facilitating or hampering further magnetic flux penetration, effectively reducing or increasing the effective maximum current the film can carry in the superconducting state. It is true, however, that for most applications in superconducting technology, nanofabrication is required, in some cases demanding the creation of regions of suppressed superconductivity called weak-links. A different study investigates normal and superconducting state properties of Nb films patterned with a single weak-link fabricated by focused ion beam (FIB) milling. The investigation quantifies the suppression of superconducting properties and the modification of the normal flow of electrons, finding that these are linked by the degree of impurities introduced by the nanofabrication. One interesting effect is the emergence of a local peak in the magnetic field-dependent magnetization of the patterned samples. In a separate work, we employ MOI to investigate these specimens under applied fields near such local peak. This study reveals that the patterned films undergo a behavior transformation from a weak-link to a strong-link, enabling more current to flow between the unpatterned Nb regions. Quantifying the MOI data allows us to understand the flux dynamics responsible for the peak effect. In a different study, the properties of a dc superconducting quantum interference device (SQUID) presenting two parallel weak-links comprised of asymmetric constrictions of a superconducting amorphous MoGe film were investigated. It is possible to influence the behavior of such devices by modifying their geometry. The study demonstrates how understanding the relationship between the device and applied magnetic fields and currents allows preparing the SQUID in multiple energy states, readable at the same field value, thus allowing its use as a multilevel memory element. Finally, we aim to consolidate MOI as a reliable tool to quantitatively study the behavior of superconducting films under ac magnetic fields. For that, we investigate the independence of the thermomagnetic history on the ac magnetic susceptibility response of an amorphous MoSi film. This study relies on the possibility of emulating ac effects by cycling an applied dc field. The results are successfully compared with standard SQUID-based magnetometry while taking advantage of the local spatial resolution of MOI to reveal the quantitative behavior of individual flux avalanche events and the presence of zones of flux annihilation at interfaces between positive and negative flux regions.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-12-04T18:02:32Z
dc.date.available.fl_str_mv 2023-12-04T18:02:32Z
dc.date.issued.fl_str_mv 2023-10-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CHAVES, Davi Araujo Dalbuquerque. Magnetic fields as a tool to control superconducting devices. 2023. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18978.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/18978
identifier_str_mv CHAVES, Davi Araujo Dalbuquerque. Magnetic fields as a tool to control superconducting devices. 2023. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18978.
url https://repositorio.ufscar.br/handle/ufscar/18978
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Física - PPGF
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/18978/2/Thesis_Davi_FinalVersion.pdf
https://repositorio.ufscar.br/bitstream/ufscar/18978/3/license_rdf
https://repositorio.ufscar.br/bitstream/ufscar/18978/4/Thesis_Davi_FinalVersion.pdf.txt
bitstream.checksum.fl_str_mv 75dd56047291e74a6733eed5ede465f9
f337d95da1fce0a22c77480e5e9a7aec
23e7527b3a48cfd0355ea9c228ffbc67
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1802136429823787008