Invariantes de germes de aplicações

Detalhes bibliográficos
Autor(a) principal: Ament, Daiane Alice Henrique
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/8976
Resumo: In this work, we show relations between invariants of map germs. First, we consider an analytic function germ f : (X, 0) —(C, 0) on an isolated determinantal singularity and we present a relation between the Euler obstruction of f and the determinantal Milnor number of f. In the particular case where (X, 0) is an isolated complete intersection singularity, we obtain a simple way to calculate the Euler obstruction of f as the difference between the dimension of two algebras. After, we work with map germs f : (X, 0) —— (C2, 0), where (X, 0) is a plane curve with isolated singularity. We introduce the image Milnor number to these map germs and we present a positive answer to the Mond’s conjecture in this context. The Mond’s conjecture proposes an inequality between two other invariants, the A^-codimension and the image Milnor number, in the case of map germs f : (Cn, 0) —(Cn+1, 0) when the dimensions (n,n + 1) is in Mather’s nice dimensions. The conjecture is true for n = 1, 2, and for the cases n > 3 is an open problem.
id SCAR_fd3277dab55b62c2625b09f54e549526
oai_identifier_str oai:repositorio.ufscar.br:ufscar/8976
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Ament, Daiane Alice HenriqueTomazella, João Nivaldohttp://lattes.cnpq.br/0051564735964760Nuño Ballesteros, Juan Joséhttp://lattes.cnpq.br/0444070739009629116c656b-c430-4623-a7f2-349b0a4a75382017-08-09T18:34:26Z2017-08-09T18:34:26Z2017-04-19AMENT, Daiane Alice Henrique. Invariantes de germes de aplicações. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8976.https://repositorio.ufscar.br/handle/ufscar/8976In this work, we show relations between invariants of map germs. First, we consider an analytic function germ f : (X, 0) —(C, 0) on an isolated determinantal singularity and we present a relation between the Euler obstruction of f and the determinantal Milnor number of f. In the particular case where (X, 0) is an isolated complete intersection singularity, we obtain a simple way to calculate the Euler obstruction of f as the difference between the dimension of two algebras. After, we work with map germs f : (X, 0) —— (C2, 0), where (X, 0) is a plane curve with isolated singularity. We introduce the image Milnor number to these map germs and we present a positive answer to the Mond’s conjecture in this context. The Mond’s conjecture proposes an inequality between two other invariants, the A^-codimension and the image Milnor number, in the case of map germs f : (Cn, 0) —(Cn+1, 0) when the dimensions (n,n + 1) is in Mather’s nice dimensions. The conjecture is true for n = 1, 2, and for the cases n > 3 is an open problem.Neste trabalho, mostramos relações entre invariantes de germes de aplicações. Primeiro, consideramos um germe de funçao analítica f : (X, 0)^(C, 0) sobre uma singularidade determinantal isolada e apresentamos uma relaçao entre a obstrução de Euler de f e o número de Milnor determinantal de f. No caso particular em que (X, 0) e uma interseçao completa com singularidade isolada, obtemos um modo simples de calcular a obstrucao de Euler de f como a diferenca entre dimensães de duas algebras. Depois, trabalhamos com germes de aplicacoes f : (X, 0)^(C2, 0), onde (X, 0) e uma curva plana com singularidade isolada. Introduzimos o número de Milnor da imagem para estes germes de aplicacães e apresentamos uma resposta positiva para a conjectura de Mond neste contexto. A conjectura de Mond propoe uma desigualdade entre outros dois invariantes, a A^-codimensao e o numero de Milnor da imagem, para o caso de germes de aplicacoes f : (Cn, 0)^(Cn+1,0) quando as dimensoes (n,n + 1) estao nas boas dimensoes de Mather. A conjectura e verdadeira para n = 1, 2, e para os casos n > 3 e um problema em aberto.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarObstrução de Euler de uma funçãoNúmero de Milnor determinantalSingularidade determinantal isoladaNúmero de Milnor da imagemCurvas singularesEuler obstruction of a functionDeterminantal Milnor numberIsolated determinantal singularityImage Milnor numberCurve singularitiesCIENCIAS EXATAS E DA TERRA::MATEMATICAInvariantes de germes de aplicaçõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline6006001c19417f-e61b-4fbd-8f7b-3624ec24ee38info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseDAHA.pdfTeseDAHA.pdfapplication/pdf605987https://repositorio.ufscar.br/bitstream/ufscar/8976/2/TeseDAHA.pdf218da6f6f0b14c9296bc76440e616467MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/8976/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXTTeseDAHA.pdf.txtTeseDAHA.pdf.txtExtracted texttext/plain141127https://repositorio.ufscar.br/bitstream/ufscar/8976/4/TeseDAHA.pdf.txt3d87f16b1df5539b2a7c21411e6aedc0MD54THUMBNAILTeseDAHA.pdf.jpgTeseDAHA.pdf.jpgIM Thumbnailimage/jpeg6883https://repositorio.ufscar.br/bitstream/ufscar/8976/5/TeseDAHA.pdf.jpge762398d9524eb4f3bb77589df417357MD55ufscar/89762023-09-18 18:31:26.125oai:repositorio.ufscar.br:ufscar/8976TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:26Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Invariantes de germes de aplicações
title Invariantes de germes de aplicações
spellingShingle Invariantes de germes de aplicações
Ament, Daiane Alice Henrique
Obstrução de Euler de uma função
Número de Milnor determinantal
Singularidade determinantal isolada
Número de Milnor da imagem
Curvas singulares
Euler obstruction of a function
Determinantal Milnor number
Isolated determinantal singularity
Image Milnor number
Curve singularities
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Invariantes de germes de aplicações
title_full Invariantes de germes de aplicações
title_fullStr Invariantes de germes de aplicações
title_full_unstemmed Invariantes de germes de aplicações
title_sort Invariantes de germes de aplicações
author Ament, Daiane Alice Henrique
author_facet Ament, Daiane Alice Henrique
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/0444070739009629
dc.contributor.author.fl_str_mv Ament, Daiane Alice Henrique
dc.contributor.advisor1.fl_str_mv Tomazella, João Nivaldo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0051564735964760
dc.contributor.advisor-co1.fl_str_mv Nuño Ballesteros, Juan José
dc.contributor.authorID.fl_str_mv 116c656b-c430-4623-a7f2-349b0a4a7538
contributor_str_mv Tomazella, João Nivaldo
Nuño Ballesteros, Juan José
dc.subject.por.fl_str_mv Obstrução de Euler de uma função
Número de Milnor determinantal
Singularidade determinantal isolada
Número de Milnor da imagem
Curvas singulares
topic Obstrução de Euler de uma função
Número de Milnor determinantal
Singularidade determinantal isolada
Número de Milnor da imagem
Curvas singulares
Euler obstruction of a function
Determinantal Milnor number
Isolated determinantal singularity
Image Milnor number
Curve singularities
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Euler obstruction of a function
Determinantal Milnor number
Isolated determinantal singularity
Image Milnor number
Curve singularities
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description In this work, we show relations between invariants of map germs. First, we consider an analytic function germ f : (X, 0) —(C, 0) on an isolated determinantal singularity and we present a relation between the Euler obstruction of f and the determinantal Milnor number of f. In the particular case where (X, 0) is an isolated complete intersection singularity, we obtain a simple way to calculate the Euler obstruction of f as the difference between the dimension of two algebras. After, we work with map germs f : (X, 0) —— (C2, 0), where (X, 0) is a plane curve with isolated singularity. We introduce the image Milnor number to these map germs and we present a positive answer to the Mond’s conjecture in this context. The Mond’s conjecture proposes an inequality between two other invariants, the A^-codimension and the image Milnor number, in the case of map germs f : (Cn, 0) —(Cn+1, 0) when the dimensions (n,n + 1) is in Mather’s nice dimensions. The conjecture is true for n = 1, 2, and for the cases n > 3 is an open problem.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-08-09T18:34:26Z
dc.date.available.fl_str_mv 2017-08-09T18:34:26Z
dc.date.issued.fl_str_mv 2017-04-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv AMENT, Daiane Alice Henrique. Invariantes de germes de aplicações. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8976.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/8976
identifier_str_mv AMENT, Daiane Alice Henrique. Invariantes de germes de aplicações. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8976.
url https://repositorio.ufscar.br/handle/ufscar/8976
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 1c19417f-e61b-4fbd-8f7b-3624ec24ee38
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática - PPGM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/8976/2/TeseDAHA.pdf
https://repositorio.ufscar.br/bitstream/ufscar/8976/3/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/8976/4/TeseDAHA.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/8976/5/TeseDAHA.pdf.jpg
bitstream.checksum.fl_str_mv 218da6f6f0b14c9296bc76440e616467
ae0398b6f8b235e40ad82cba6c50031d
3d87f16b1df5539b2a7c21411e6aedc0
e762398d9524eb4f3bb77589df417357
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715578109558784