Invariantes de germes de aplicações
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/8976 |
Resumo: | In this work, we show relations between invariants of map germs. First, we consider an analytic function germ f : (X, 0) —(C, 0) on an isolated determinantal singularity and we present a relation between the Euler obstruction of f and the determinantal Milnor number of f. In the particular case where (X, 0) is an isolated complete intersection singularity, we obtain a simple way to calculate the Euler obstruction of f as the difference between the dimension of two algebras. After, we work with map germs f : (X, 0) —— (C2, 0), where (X, 0) is a plane curve with isolated singularity. We introduce the image Milnor number to these map germs and we present a positive answer to the Mond’s conjecture in this context. The Mond’s conjecture proposes an inequality between two other invariants, the A^-codimension and the image Milnor number, in the case of map germs f : (Cn, 0) —(Cn+1, 0) when the dimensions (n,n + 1) is in Mather’s nice dimensions. The conjecture is true for n = 1, 2, and for the cases n > 3 is an open problem. |
id |
SCAR_fd3277dab55b62c2625b09f54e549526 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/8976 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Ament, Daiane Alice HenriqueTomazella, João Nivaldohttp://lattes.cnpq.br/0051564735964760Nuño Ballesteros, Juan Joséhttp://lattes.cnpq.br/0444070739009629116c656b-c430-4623-a7f2-349b0a4a75382017-08-09T18:34:26Z2017-08-09T18:34:26Z2017-04-19AMENT, Daiane Alice Henrique. Invariantes de germes de aplicações. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8976.https://repositorio.ufscar.br/handle/ufscar/8976In this work, we show relations between invariants of map germs. First, we consider an analytic function germ f : (X, 0) —(C, 0) on an isolated determinantal singularity and we present a relation between the Euler obstruction of f and the determinantal Milnor number of f. In the particular case where (X, 0) is an isolated complete intersection singularity, we obtain a simple way to calculate the Euler obstruction of f as the difference between the dimension of two algebras. After, we work with map germs f : (X, 0) —— (C2, 0), where (X, 0) is a plane curve with isolated singularity. We introduce the image Milnor number to these map germs and we present a positive answer to the Mond’s conjecture in this context. The Mond’s conjecture proposes an inequality between two other invariants, the A^-codimension and the image Milnor number, in the case of map germs f : (Cn, 0) —(Cn+1, 0) when the dimensions (n,n + 1) is in Mather’s nice dimensions. The conjecture is true for n = 1, 2, and for the cases n > 3 is an open problem.Neste trabalho, mostramos relações entre invariantes de germes de aplicações. Primeiro, consideramos um germe de funçao analítica f : (X, 0)^(C, 0) sobre uma singularidade determinantal isolada e apresentamos uma relaçao entre a obstrução de Euler de f e o número de Milnor determinantal de f. No caso particular em que (X, 0) e uma interseçao completa com singularidade isolada, obtemos um modo simples de calcular a obstrucao de Euler de f como a diferenca entre dimensães de duas algebras. Depois, trabalhamos com germes de aplicacoes f : (X, 0)^(C2, 0), onde (X, 0) e uma curva plana com singularidade isolada. Introduzimos o número de Milnor da imagem para estes germes de aplicacães e apresentamos uma resposta positiva para a conjectura de Mond neste contexto. A conjectura de Mond propoe uma desigualdade entre outros dois invariantes, a A^-codimensao e o numero de Milnor da imagem, para o caso de germes de aplicacoes f : (Cn, 0)^(Cn+1,0) quando as dimensoes (n,n + 1) estao nas boas dimensoes de Mather. A conjectura e verdadeira para n = 1, 2, e para os casos n > 3 e um problema em aberto.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarObstrução de Euler de uma funçãoNúmero de Milnor determinantalSingularidade determinantal isoladaNúmero de Milnor da imagemCurvas singularesEuler obstruction of a functionDeterminantal Milnor numberIsolated determinantal singularityImage Milnor numberCurve singularitiesCIENCIAS EXATAS E DA TERRA::MATEMATICAInvariantes de germes de aplicaçõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline6006001c19417f-e61b-4fbd-8f7b-3624ec24ee38info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseDAHA.pdfTeseDAHA.pdfapplication/pdf605987https://repositorio.ufscar.br/bitstream/ufscar/8976/2/TeseDAHA.pdf218da6f6f0b14c9296bc76440e616467MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/8976/3/license.txtae0398b6f8b235e40ad82cba6c50031dMD53TEXTTeseDAHA.pdf.txtTeseDAHA.pdf.txtExtracted texttext/plain141127https://repositorio.ufscar.br/bitstream/ufscar/8976/4/TeseDAHA.pdf.txt3d87f16b1df5539b2a7c21411e6aedc0MD54THUMBNAILTeseDAHA.pdf.jpgTeseDAHA.pdf.jpgIM Thumbnailimage/jpeg6883https://repositorio.ufscar.br/bitstream/ufscar/8976/5/TeseDAHA.pdf.jpge762398d9524eb4f3bb77589df417357MD55ufscar/89762023-09-18 18:31:26.125oai:repositorio.ufscar.br:ufscar/8976TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:26Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Invariantes de germes de aplicações |
title |
Invariantes de germes de aplicações |
spellingShingle |
Invariantes de germes de aplicações Ament, Daiane Alice Henrique Obstrução de Euler de uma função Número de Milnor determinantal Singularidade determinantal isolada Número de Milnor da imagem Curvas singulares Euler obstruction of a function Determinantal Milnor number Isolated determinantal singularity Image Milnor number Curve singularities CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Invariantes de germes de aplicações |
title_full |
Invariantes de germes de aplicações |
title_fullStr |
Invariantes de germes de aplicações |
title_full_unstemmed |
Invariantes de germes de aplicações |
title_sort |
Invariantes de germes de aplicações |
author |
Ament, Daiane Alice Henrique |
author_facet |
Ament, Daiane Alice Henrique |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/0444070739009629 |
dc.contributor.author.fl_str_mv |
Ament, Daiane Alice Henrique |
dc.contributor.advisor1.fl_str_mv |
Tomazella, João Nivaldo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0051564735964760 |
dc.contributor.advisor-co1.fl_str_mv |
Nuño Ballesteros, Juan José |
dc.contributor.authorID.fl_str_mv |
116c656b-c430-4623-a7f2-349b0a4a7538 |
contributor_str_mv |
Tomazella, João Nivaldo Nuño Ballesteros, Juan José |
dc.subject.por.fl_str_mv |
Obstrução de Euler de uma função Número de Milnor determinantal Singularidade determinantal isolada Número de Milnor da imagem Curvas singulares |
topic |
Obstrução de Euler de uma função Número de Milnor determinantal Singularidade determinantal isolada Número de Milnor da imagem Curvas singulares Euler obstruction of a function Determinantal Milnor number Isolated determinantal singularity Image Milnor number Curve singularities CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Euler obstruction of a function Determinantal Milnor number Isolated determinantal singularity Image Milnor number Curve singularities |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
In this work, we show relations between invariants of map germs. First, we consider an analytic function germ f : (X, 0) —(C, 0) on an isolated determinantal singularity and we present a relation between the Euler obstruction of f and the determinantal Milnor number of f. In the particular case where (X, 0) is an isolated complete intersection singularity, we obtain a simple way to calculate the Euler obstruction of f as the difference between the dimension of two algebras. After, we work with map germs f : (X, 0) —— (C2, 0), where (X, 0) is a plane curve with isolated singularity. We introduce the image Milnor number to these map germs and we present a positive answer to the Mond’s conjecture in this context. The Mond’s conjecture proposes an inequality between two other invariants, the A^-codimension and the image Milnor number, in the case of map germs f : (Cn, 0) —(Cn+1, 0) when the dimensions (n,n + 1) is in Mather’s nice dimensions. The conjecture is true for n = 1, 2, and for the cases n > 3 is an open problem. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-08-09T18:34:26Z |
dc.date.available.fl_str_mv |
2017-08-09T18:34:26Z |
dc.date.issued.fl_str_mv |
2017-04-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
AMENT, Daiane Alice Henrique. Invariantes de germes de aplicações. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8976. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/8976 |
identifier_str_mv |
AMENT, Daiane Alice Henrique. Invariantes de germes de aplicações. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8976. |
url |
https://repositorio.ufscar.br/handle/ufscar/8976 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
1c19417f-e61b-4fbd-8f7b-3624ec24ee38 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/8976/2/TeseDAHA.pdf https://repositorio.ufscar.br/bitstream/ufscar/8976/3/license.txt https://repositorio.ufscar.br/bitstream/ufscar/8976/4/TeseDAHA.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/8976/5/TeseDAHA.pdf.jpg |
bitstream.checksum.fl_str_mv |
218da6f6f0b14c9296bc76440e616467 ae0398b6f8b235e40ad82cba6c50031d 3d87f16b1df5539b2a7c21411e6aedc0 e762398d9524eb4f3bb77589df417357 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715578109558784 |