Stochastic methodology for estimation of the potential and depleted yield in corn
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , |
Tipo de documento: | preprint |
Idioma: | por |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/6698 |
Resumo: | The objective of this research was to compare four methodologies of parameters simulation used in the corn potential and depleted yield in Rio Grande do Sul State. Had been used the daily mean air temperature, isolation and rain precipitation of sixteen localities of the Rio Grande do Sul State, as changeable of entrance in the modified model of the agroecological zone considered by De Wit. The data base was formed by 100 simulated values of the variable in each one of the eighth dates proposals (October 1st, October 11th, October 21st, November 1st, November 11th, November 21st, December 1st, December 11th). The data had been through four cases of simulation: (i) average insolation and temperature (normal truncated); (ii) average insolation and temperature (triangular non-symmetrical); (iii) average insolation and temperature (triangular symmetrical) e (IV) insolation (triangular symmetrical). To verify was that: (i) the adaptation of the method (considered for De Wit) of the agroecological zone makes possible to define the order of magnitude of the maize potential and depleted productivities, in Rio Grande do Sul State; (ii) the random procedure process an in agreement variability time of sowing and evaluated place; (iii) the procedure (b) average insolation and temperature (triangular anti-symmetrical) and (d) insolation (triangular symmetrical) does not diverge how much the classification, being that the last one overestimates the values of potential and depleted productivity. |
id |
SCI-1_02082324f0bef6e98fdb1e37a9783bf5 |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/6698 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Stochastic methodology for estimation of the potential and depleted yield in cornMetodologia estocastica para estimar a produtividade potencial do milhoSimulationprobability distributionagroecological zonedistribuições de probabilidadezona agroecológicasimulaçãoThe objective of this research was to compare four methodologies of parameters simulation used in the corn potential and depleted yield in Rio Grande do Sul State. Had been used the daily mean air temperature, isolation and rain precipitation of sixteen localities of the Rio Grande do Sul State, as changeable of entrance in the modified model of the agroecological zone considered by De Wit. The data base was formed by 100 simulated values of the variable in each one of the eighth dates proposals (October 1st, October 11th, October 21st, November 1st, November 11th, November 21st, December 1st, December 11th). The data had been through four cases of simulation: (i) average insolation and temperature (normal truncated); (ii) average insolation and temperature (triangular non-symmetrical); (iii) average insolation and temperature (triangular symmetrical) e (IV) insolation (triangular symmetrical). To verify was that: (i) the adaptation of the method (considered for De Wit) of the agroecological zone makes possible to define the order of magnitude of the maize potential and depleted productivities, in Rio Grande do Sul State; (ii) the random procedure process an in agreement variability time of sowing and evaluated place; (iii) the procedure (b) average insolation and temperature (triangular anti-symmetrical) and (d) insolation (triangular symmetrical) does not diverge how much the classification, being that the last one overestimates the values of potential and depleted productivity.O objetivo dessa pesquisa foi comparar quatro metodologias de simulação de parâmetros utilizados na estimação da produtividade potencial e deplecionada da cultura do milho no Estado do Rio Grande do Sul por meio do modelo modificado da zona agroecológica proposto por De Wit. Utilizaram-se os dados de temperatura média do ar, insolação e precipitação pluvial de dezesseis localidades do Estado do Rio Grande do Sul. O banco de dados foi formado por 100 valores simulados das variáveis em cada uma das oito datas propostas (01/out, 11/out, 21/out, 01/nov, 11/nov, 21/nov, 01/dez e 11/dez). Os dados foram obtidos por meio de quatro casos de simulação: (a) insolação média e temperatura (normal truncada); (b) insolação média e temperatura (triangular assimétrica); (c) insolação média e temperatura (triangular simétrica) e (d) insolação (triangular simétrica). Verificou-se que: (i) a adaptação do método (proposto por De Wit) da zona agroecológica possibilita definir a ordem de grandeza das produtividades potencial e deplecionada da cultura de milho, no Estado do Rio Grande do Sul; (ii) o procedimento estocástico possui uma variabilidade conforme época de semeadura e local avaliado; (iii) o procedimento (b) insolação média e temperatura (triangular assimétrica) e (d) insolação (triangular simétrica) não divergem quanto à classificação, sendo que o último superestima os valores de produtividade potencial e deplecionada.SciELO PreprintsSciELO PreprintsSciELO Preprints2023-09-01info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/669810.1590/SciELOPreprints.6698porhttps://preprints.scielo.org/index.php/scielo/article/view/6698/12713Copyright (c) 2023 Reinaldo Antonio Garcia Bonnecarrère, Durval Dourado Neto, Nathália da Rosa Silva, Thomas Martinhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBonnecarrère, Reinaldo Antonio GarciaDourado Neto, DurvalSilva, Nathália da RosaMartin, Thomasreponame:SciELO Preprintsinstname:Scientific Electronic Library Online (SCIELO)instacron:SCI2023-08-29T13:51:29Zoai:ops.preprints.scielo.org:preprint/6698Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2023-08-29T13:51:29SciELO Preprints - Scientific Electronic Library Online (SCIELO)false |
dc.title.none.fl_str_mv |
Stochastic methodology for estimation of the potential and depleted yield in corn Metodologia estocastica para estimar a produtividade potencial do milho |
title |
Stochastic methodology for estimation of the potential and depleted yield in corn |
spellingShingle |
Stochastic methodology for estimation of the potential and depleted yield in corn Bonnecarrère, Reinaldo Antonio Garcia Simulation probability distribution agroecological zone distribuições de probabilidade zona agroecológica simulação |
title_short |
Stochastic methodology for estimation of the potential and depleted yield in corn |
title_full |
Stochastic methodology for estimation of the potential and depleted yield in corn |
title_fullStr |
Stochastic methodology for estimation of the potential and depleted yield in corn |
title_full_unstemmed |
Stochastic methodology for estimation of the potential and depleted yield in corn |
title_sort |
Stochastic methodology for estimation of the potential and depleted yield in corn |
author |
Bonnecarrère, Reinaldo Antonio Garcia |
author_facet |
Bonnecarrère, Reinaldo Antonio Garcia Dourado Neto, Durval Silva, Nathália da Rosa Martin, Thomas |
author_role |
author |
author2 |
Dourado Neto, Durval Silva, Nathália da Rosa Martin, Thomas |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Bonnecarrère, Reinaldo Antonio Garcia Dourado Neto, Durval Silva, Nathália da Rosa Martin, Thomas |
dc.subject.por.fl_str_mv |
Simulation probability distribution agroecological zone distribuições de probabilidade zona agroecológica simulação |
topic |
Simulation probability distribution agroecological zone distribuições de probabilidade zona agroecológica simulação |
description |
The objective of this research was to compare four methodologies of parameters simulation used in the corn potential and depleted yield in Rio Grande do Sul State. Had been used the daily mean air temperature, isolation and rain precipitation of sixteen localities of the Rio Grande do Sul State, as changeable of entrance in the modified model of the agroecological zone considered by De Wit. The data base was formed by 100 simulated values of the variable in each one of the eighth dates proposals (October 1st, October 11th, October 21st, November 1st, November 11th, November 21st, December 1st, December 11th). The data had been through four cases of simulation: (i) average insolation and temperature (normal truncated); (ii) average insolation and temperature (triangular non-symmetrical); (iii) average insolation and temperature (triangular symmetrical) e (IV) insolation (triangular symmetrical). To verify was that: (i) the adaptation of the method (considered for De Wit) of the agroecological zone makes possible to define the order of magnitude of the maize potential and depleted productivities, in Rio Grande do Sul State; (ii) the random procedure process an in agreement variability time of sowing and evaluated place; (iii) the procedure (b) average insolation and temperature (triangular anti-symmetrical) and (d) insolation (triangular symmetrical) does not diverge how much the classification, being that the last one overestimates the values of potential and depleted productivity. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/6698 10.1590/SciELOPreprints.6698 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/6698 |
identifier_str_mv |
10.1590/SciELOPreprints.6698 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/6698/12713 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:Scientific Electronic Library Online (SCIELO) instacron:SCI |
instname_str |
Scientific Electronic Library Online (SCIELO) |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - Scientific Electronic Library Online (SCIELO) |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047812831051776 |