Stochastic methodology for estimation of the potential and depleted yield in corn

Detalhes bibliográficos
Autor(a) principal: Bonnecarrère, Reinaldo Antonio Garcia
Data de Publicação: 2023
Outros Autores: Dourado Neto, Durval, Silva, Nathália da Rosa, Martin, Thomas
Tipo de documento: preprint
Idioma: por
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/6698
Resumo: The objective of this research was to compare four methodologies of parameters simulation used in the corn potential and depleted yield in Rio Grande do Sul State. Had been used the daily mean air temperature, isolation and rain precipitation of sixteen localities of the Rio Grande do Sul State, as changeable of entrance in the modified model of the agroecological zone considered by De Wit. The data base was formed by 100 simulated values of the variable in each one of the eighth dates proposals (October 1st, October 11th, October 21st, November 1st, November 11th, November 21st, December 1st, December 11th). The data had been through four cases of simulation: (i) average insolation and temperature (normal truncated); (ii) average insolation and temperature (triangular non-symmetrical); (iii) average insolation and temperature (triangular symmetrical) e (IV) insolation (triangular symmetrical). To verify was that: (i) the adaptation of the method (considered for De Wit) of the agroecological zone makes possible to define the order of magnitude of the maize potential and depleted productivities, in Rio Grande do Sul State; (ii) the random procedure process an in agreement variability time of sowing and evaluated place; (iii) the procedure (b) average insolation and temperature (triangular anti-symmetrical) and (d) insolation (triangular symmetrical) does not diverge how much the classification, being that the last one overestimates the values of potential and depleted productivity.
id SCI-1_02082324f0bef6e98fdb1e37a9783bf5
oai_identifier_str oai:ops.preprints.scielo.org:preprint/6698
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling Stochastic methodology for estimation of the potential and depleted yield in cornMetodologia estocastica para estimar a produtividade potencial do milhoSimulationprobability distributionagroecological zonedistribuições de probabilidadezona agroecológicasimulaçãoThe objective of this research was to compare four methodologies of parameters simulation used in the corn potential and depleted yield in Rio Grande do Sul State. Had been used the daily mean air temperature, isolation and rain precipitation of sixteen localities of the Rio Grande do Sul State, as changeable of entrance in the modified model of the agroecological zone considered by De Wit. The data base was formed by 100 simulated values of the variable in each one of the eighth dates proposals (October 1st, October 11th, October 21st, November 1st, November 11th, November 21st, December 1st, December 11th). The data had been through four cases of simulation: (i) average insolation and temperature (normal truncated); (ii) average insolation and temperature (triangular non-symmetrical); (iii) average insolation and temperature (triangular symmetrical) e (IV) insolation (triangular symmetrical). To verify was that: (i) the adaptation of the method (considered for De Wit) of the agroecological zone makes possible to define the order of magnitude of the maize potential and depleted productivities, in Rio Grande do Sul State; (ii) the random procedure process an in agreement variability time of sowing and evaluated place; (iii) the procedure (b) average insolation and temperature (triangular anti-symmetrical) and (d) insolation (triangular symmetrical) does not diverge how much the classification, being that the last one overestimates the values of potential and depleted productivity.O objetivo dessa pesquisa foi comparar quatro metodologias de simulação de parâmetros utilizados na estimação da produtividade potencial e deplecionada da cultura do milho no Estado do Rio Grande do Sul por meio do modelo modificado da zona agroecológica proposto por De Wit. Utilizaram-se os dados de temperatura média do ar, insolação e precipitação pluvial de dezesseis localidades do Estado do Rio Grande do Sul. O banco de dados foi formado por 100 valores simulados das variáveis em cada uma das oito datas propostas (01/out, 11/out, 21/out, 01/nov, 11/nov, 21/nov, 01/dez e 11/dez). Os dados foram obtidos por meio de quatro casos de simulação: (a) insolação média e temperatura (normal truncada); (b) insolação média e temperatura (triangular assimétrica); (c) insolação média e temperatura (triangular simétrica) e (d) insolação (triangular simétrica). Verificou-se que: (i) a adaptação do método (proposto por De Wit) da zona agroecológica possibilita definir a ordem de grandeza das produtividades potencial e deplecionada da cultura de milho, no Estado do Rio Grande do Sul; (ii) o procedimento estocástico possui uma variabilidade conforme época de semeadura e local avaliado; (iii) o procedimento (b) insolação média e temperatura (triangular assimétrica) e (d) insolação (triangular simétrica) não divergem quanto à classificação, sendo que o último superestima os valores de produtividade potencial e deplecionada.SciELO PreprintsSciELO PreprintsSciELO Preprints2023-09-01info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/669810.1590/SciELOPreprints.6698porhttps://preprints.scielo.org/index.php/scielo/article/view/6698/12713Copyright (c) 2023 Reinaldo Antonio Garcia Bonnecarrère, Durval Dourado Neto, Nathália da Rosa Silva, Thomas Martinhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBonnecarrère, Reinaldo Antonio GarciaDourado Neto, DurvalSilva, Nathália da RosaMartin, Thomasreponame:SciELO Preprintsinstname:Scientific Electronic Library Online (SCIELO)instacron:SCI2023-08-29T13:51:29Zoai:ops.preprints.scielo.org:preprint/6698Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2023-08-29T13:51:29SciELO Preprints - Scientific Electronic Library Online (SCIELO)false
dc.title.none.fl_str_mv Stochastic methodology for estimation of the potential and depleted yield in corn
Metodologia estocastica para estimar a produtividade potencial do milho
title Stochastic methodology for estimation of the potential and depleted yield in corn
spellingShingle Stochastic methodology for estimation of the potential and depleted yield in corn
Bonnecarrère, Reinaldo Antonio Garcia
Simulation
probability distribution
agroecological zone
distribuições de probabilidade
zona agroecológica
simulação
title_short Stochastic methodology for estimation of the potential and depleted yield in corn
title_full Stochastic methodology for estimation of the potential and depleted yield in corn
title_fullStr Stochastic methodology for estimation of the potential and depleted yield in corn
title_full_unstemmed Stochastic methodology for estimation of the potential and depleted yield in corn
title_sort Stochastic methodology for estimation of the potential and depleted yield in corn
author Bonnecarrère, Reinaldo Antonio Garcia
author_facet Bonnecarrère, Reinaldo Antonio Garcia
Dourado Neto, Durval
Silva, Nathália da Rosa
Martin, Thomas
author_role author
author2 Dourado Neto, Durval
Silva, Nathália da Rosa
Martin, Thomas
author2_role author
author
author
dc.contributor.author.fl_str_mv Bonnecarrère, Reinaldo Antonio Garcia
Dourado Neto, Durval
Silva, Nathália da Rosa
Martin, Thomas
dc.subject.por.fl_str_mv Simulation
probability distribution
agroecological zone
distribuições de probabilidade
zona agroecológica
simulação
topic Simulation
probability distribution
agroecological zone
distribuições de probabilidade
zona agroecológica
simulação
description The objective of this research was to compare four methodologies of parameters simulation used in the corn potential and depleted yield in Rio Grande do Sul State. Had been used the daily mean air temperature, isolation and rain precipitation of sixteen localities of the Rio Grande do Sul State, as changeable of entrance in the modified model of the agroecological zone considered by De Wit. The data base was formed by 100 simulated values of the variable in each one of the eighth dates proposals (October 1st, October 11th, October 21st, November 1st, November 11th, November 21st, December 1st, December 11th). The data had been through four cases of simulation: (i) average insolation and temperature (normal truncated); (ii) average insolation and temperature (triangular non-symmetrical); (iii) average insolation and temperature (triangular symmetrical) e (IV) insolation (triangular symmetrical). To verify was that: (i) the adaptation of the method (considered for De Wit) of the agroecological zone makes possible to define the order of magnitude of the maize potential and depleted productivities, in Rio Grande do Sul State; (ii) the random procedure process an in agreement variability time of sowing and evaluated place; (iii) the procedure (b) average insolation and temperature (triangular anti-symmetrical) and (d) insolation (triangular symmetrical) does not diverge how much the classification, being that the last one overestimates the values of potential and depleted productivity.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/6698
10.1590/SciELOPreprints.6698
url https://preprints.scielo.org/index.php/scielo/preprint/view/6698
identifier_str_mv 10.1590/SciELOPreprints.6698
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/article/view/6698/12713
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:Scientific Electronic Library Online (SCIELO)
instacron:SCI
instname_str Scientific Electronic Library Online (SCIELO)
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - Scientific Electronic Library Online (SCIELO)
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1797047812831051776