Extrapolation of survival curves in health: a methodological approach for direct fitting to aggregated data

Detalhes bibliográficos
Autor(a) principal: Borges, Solange
Data de Publicação: 2022
Outros Autores: Zimmermann, Ivan Ricardo
Tipo de documento: preprint
Idioma: por
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/5110
Resumo: Introduction: Economic evaluation models often adopt long time horizons, making it necessary to extrapolate data from clinical research for economic evaluation models. The common methodological proposals available are strongly based on individual patient data (IPD), a scenario not always feasible for the daily routine of the Health Technology Assessment (HTA). Thus, the objective of this study was to propose a method for extrapolation with survival curves with direct fitting to aggregated data. Methods: The case study consisted of the application of parametric models of survival analysis with the main recommended distributions: exponential, Weibull, log-normal, log-logistics, generalized gamma and Gompertz. The models were adjusted to data from a randomized clinical trial testing therapies (anastrozole and fulvestrant) in the context of metastatic breast cancer with 10 years of follow-up on progression-free survival (PFS) and overall survival (OS). After making the adjustments to the individualized data, obtained by contacting the authors, we sought to validate the application of the adjustment to the aggregated data using nonlinear regressions and optimization algorithms. Both methods were compared in terms of visual inspection and quality of fit (Akaike Information Criteria – AIC and Bayesian Information Criteria – BIC). Results: In the two treatment arms, the Weibull and generalized gamma distributions were the ones that best fitted the OS data, both in the individualized and in the aggregated approach, according to statistical and visual inspection criteria. For PFS, log-logistic and log-normal curves were used for anastrozole. In the case of fulvestrant, the best choices would be the log-normal and generalized gamma curves for the individualized data and Gompertz and generalized gamma curves for the aggregated data. In terms of visual inspection, the difference was barely perceptible between the use of the individualized and aggregated models. Conclusion: Direct fitting data with survival curves to aggregated data is feasible. Despite differences in the choice of some curves, visual inspection suggests that it is unlikely that these differences have an impact on decision making. The algorithm presented here may be useful in situations where access to IPD is not possible.
id SCI-1_0ef4ec04fc0908e5e8267f1cd5616098
oai_identifier_str oai:ops.preprints.scielo.org:preprint/5110
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling Extrapolation of survival curves in health: a methodological approach for direct fitting to aggregated dataExtrapolação de dados curvas de sobrevida em saúde: uma abordagem metodológica ajuste direto com dados agregados Avaliação Econômica em SaúdeAnálise de SobrevidaAnálise de RegressãoHealth Economic EvaluationSurvival AnalysisRegression AnalysisIntroduction: Economic evaluation models often adopt long time horizons, making it necessary to extrapolate data from clinical research for economic evaluation models. The common methodological proposals available are strongly based on individual patient data (IPD), a scenario not always feasible for the daily routine of the Health Technology Assessment (HTA). Thus, the objective of this study was to propose a method for extrapolation with survival curves with direct fitting to aggregated data. Methods: The case study consisted of the application of parametric models of survival analysis with the main recommended distributions: exponential, Weibull, log-normal, log-logistics, generalized gamma and Gompertz. The models were adjusted to data from a randomized clinical trial testing therapies (anastrozole and fulvestrant) in the context of metastatic breast cancer with 10 years of follow-up on progression-free survival (PFS) and overall survival (OS). After making the adjustments to the individualized data, obtained by contacting the authors, we sought to validate the application of the adjustment to the aggregated data using nonlinear regressions and optimization algorithms. Both methods were compared in terms of visual inspection and quality of fit (Akaike Information Criteria – AIC and Bayesian Information Criteria – BIC). Results: In the two treatment arms, the Weibull and generalized gamma distributions were the ones that best fitted the OS data, both in the individualized and in the aggregated approach, according to statistical and visual inspection criteria. For PFS, log-logistic and log-normal curves were used for anastrozole. In the case of fulvestrant, the best choices would be the log-normal and generalized gamma curves for the individualized data and Gompertz and generalized gamma curves for the aggregated data. In terms of visual inspection, the difference was barely perceptible between the use of the individualized and aggregated models. Conclusion: Direct fitting data with survival curves to aggregated data is feasible. Despite differences in the choice of some curves, visual inspection suggests that it is unlikely that these differences have an impact on decision making. The algorithm presented here may be useful in situations where access to IPD is not possible.Introdução: Os modelos de avaliação econômica frequentemente adotam longos horizontes temporais. Contudo, a pesquisa clínica geralmente tem um curto tempo de seguimento dos participantes, tornando-se necessária a extrapolação de dados para alimentar os modelos de avaliação econômica. As propostas metodológicas disponíveis trabalham fortemente com os dados em sua forma individualizada, cenário nem sempre factível ao cotidiano da Avaliação de Tecnologias em Saúde (ATS). Assim, o objetivo deste estudo foi replicar um método para extrapolação com curvas de sobrevida aplicável a dados agregados. Métodos: O estudo de caso consistiu nas aplicações de modelos paramétricos de análise de sobrevivência com as principais distribuições recomendadas: Exponencial, Weibull, Log-normal, Log-logística, Gama generalizada e Gompertz. Os modelos foram ajustados aos dados de um ensaio clínico randomizado de duas terapias (anastrozol e fulvestranto) no contexto do câncer de mama metastático com 10 anos de seguimento nos desfechos de sobrevida livre de progressão (SLP) e sobrevida global (SG). Após a condução dos ajustes aos dados individualizados, obtidos mediante contato com os autores, buscou-se validar a aplicação do ajuste aos dados agregados com uso de regressões não lineares e algoritmos de otimização. Ambos os métodos foram comparados em termos de inspeção visual e qualidade do ajuste (Akaike Information Criteria – AIC). Resultados: Na verificação da aplicação no estudo de caso nos dados dos dois braços de tratamentos, as distribuições Weibull e gama generalizada foram as que melhor se ajustaram aos dados de SG, seja na abordagem individualizada quanto na agregada, segundo critérios estatísticos e de inspeção visual. Para a SLP foram as curvas log-logística e log-normal para o anastrozol. No caso do tratamento com fulvestranto, as melhores escolhas seriam as curvas log-normal e gama generalizada para os dados individualizados e Gompertz e gama generalizada nos dados agregados. Em termos de inspeção visual, a diferença foi pouco perceptível entre o uso do modelo individualizado e agregado. Conclusão: O ajuste de dados com curvas de sobrevida a dados agregados se mostra factível. Apesar de diferenças na escolha algumas curvas, a inspeção visual sugere que é pouco provável que estas diferenças tenham impacto para a tomada de decisão. O algoritmo aqui apresentado pode ser útil nas situações de impossibilidade de acesso aos dados individualizados.SciELO PreprintsSciELO PreprintsSciELO Preprints2022-11-18info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/511010.1590/SciELOPreprints.5110porhttps://preprints.scielo.org/index.php/scielo/article/view/5110/9916Copyright (c) 2022 Solange Borges, Ivan Ricardo Zimmermannhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBorges, SolangeZimmermann, Ivan Ricardoreponame:SciELO Preprintsinstname:SciELOinstacron:SCI2022-11-18T16:04:25Zoai:ops.preprints.scielo.org:preprint/5110Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2022-11-18T16:04:25SciELO Preprints - SciELOfalse
dc.title.none.fl_str_mv Extrapolation of survival curves in health: a methodological approach for direct fitting to aggregated data
Extrapolação de dados curvas de sobrevida em saúde: uma abordagem metodológica ajuste direto com dados agregados
title Extrapolation of survival curves in health: a methodological approach for direct fitting to aggregated data
spellingShingle Extrapolation of survival curves in health: a methodological approach for direct fitting to aggregated data
Borges, Solange
Avaliação Econômica em Saúde
Análise de Sobrevida
Análise de Regressão
Health Economic Evaluation
Survival Analysis
Regression Analysis
title_short Extrapolation of survival curves in health: a methodological approach for direct fitting to aggregated data
title_full Extrapolation of survival curves in health: a methodological approach for direct fitting to aggregated data
title_fullStr Extrapolation of survival curves in health: a methodological approach for direct fitting to aggregated data
title_full_unstemmed Extrapolation of survival curves in health: a methodological approach for direct fitting to aggregated data
title_sort Extrapolation of survival curves in health: a methodological approach for direct fitting to aggregated data
author Borges, Solange
author_facet Borges, Solange
Zimmermann, Ivan Ricardo
author_role author
author2 Zimmermann, Ivan Ricardo
author2_role author
dc.contributor.author.fl_str_mv Borges, Solange
Zimmermann, Ivan Ricardo
dc.subject.por.fl_str_mv Avaliação Econômica em Saúde
Análise de Sobrevida
Análise de Regressão
Health Economic Evaluation
Survival Analysis
Regression Analysis
topic Avaliação Econômica em Saúde
Análise de Sobrevida
Análise de Regressão
Health Economic Evaluation
Survival Analysis
Regression Analysis
description Introduction: Economic evaluation models often adopt long time horizons, making it necessary to extrapolate data from clinical research for economic evaluation models. The common methodological proposals available are strongly based on individual patient data (IPD), a scenario not always feasible for the daily routine of the Health Technology Assessment (HTA). Thus, the objective of this study was to propose a method for extrapolation with survival curves with direct fitting to aggregated data. Methods: The case study consisted of the application of parametric models of survival analysis with the main recommended distributions: exponential, Weibull, log-normal, log-logistics, generalized gamma and Gompertz. The models were adjusted to data from a randomized clinical trial testing therapies (anastrozole and fulvestrant) in the context of metastatic breast cancer with 10 years of follow-up on progression-free survival (PFS) and overall survival (OS). After making the adjustments to the individualized data, obtained by contacting the authors, we sought to validate the application of the adjustment to the aggregated data using nonlinear regressions and optimization algorithms. Both methods were compared in terms of visual inspection and quality of fit (Akaike Information Criteria – AIC and Bayesian Information Criteria – BIC). Results: In the two treatment arms, the Weibull and generalized gamma distributions were the ones that best fitted the OS data, both in the individualized and in the aggregated approach, according to statistical and visual inspection criteria. For PFS, log-logistic and log-normal curves were used for anastrozole. In the case of fulvestrant, the best choices would be the log-normal and generalized gamma curves for the individualized data and Gompertz and generalized gamma curves for the aggregated data. In terms of visual inspection, the difference was barely perceptible between the use of the individualized and aggregated models. Conclusion: Direct fitting data with survival curves to aggregated data is feasible. Despite differences in the choice of some curves, visual inspection suggests that it is unlikely that these differences have an impact on decision making. The algorithm presented here may be useful in situations where access to IPD is not possible.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-18
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/5110
10.1590/SciELOPreprints.5110
url https://preprints.scielo.org/index.php/scielo/preprint/view/5110
identifier_str_mv 10.1590/SciELOPreprints.5110
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/article/view/5110/9916
dc.rights.driver.fl_str_mv Copyright (c) 2022 Solange Borges, Ivan Ricardo Zimmermann
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Solange Borges, Ivan Ricardo Zimmermann
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:SciELO
instacron:SCI
instname_str SciELO
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - SciELO
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1797047830563520512