Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , , , , , , , |
Tipo de documento: | preprint |
Idioma: | por |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/2446 |
Resumo: | Objectives: to estimate the prevalence of SARS-CoV-2 infection in residents of the Greater Vitória region living in subnormal and non-subnormal agglomerations; and, compare sociodemographic and clinical characteristics of total residents (infected and not infected with SARS-CoV-2), among these clusters. Method: Population-based prevalence study, through serological testing carried out in 2020, with a study unit in households in Greater Vitória, grouped into census tracts classified as sub-normal clusters (AGSN) and non-sub-normal clusters (AGNSN ). The two groups were compared in terms of prevalence and associated factors. The significance level adopted was 5%. Results: The prevalence found in the AGSN was 12.05% (95% CI from 9.59 to 14.50%), and in the AGNSN group it was 10.23% (95% CI from 7.97% to 12.50% ) this difference was not statistically significant (p = 0.273). Comparing the sociodemographic characteristics, more people who declare themselves to be of mixed race were found in the SGNA, a higher percentage of illiterates and people with only elementary education, greater number of residents per household, longer stay in public transport, sharing a bathroom with another household , fewer bedrooms per residence and higher frequency of irregular water supply when compared to AGNSN(P<0.05). Conclusions: The epidemiological characteristics of the SNGA residents show the social inequalities that can hinder control measures in a pandemic situation. |
id |
SCI-1_3086e9409d8b1067fd816e21f08b643a |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/2446 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, BrazilCovid-19 em áreas de aglomerados subnormais e não subnormais no Espírito Santo, BrasilInfecções por CoronavirusPrevalênciaHabitaçãoDistribuição Espacial da PopulaçãoCoronavirus InfectionsPrevalenceHousingPopulation spacial distributionObjectives: to estimate the prevalence of SARS-CoV-2 infection in residents of the Greater Vitória region living in subnormal and non-subnormal agglomerations; and, compare sociodemographic and clinical characteristics of total residents (infected and not infected with SARS-CoV-2), among these clusters. Method: Population-based prevalence study, through serological testing carried out in 2020, with a study unit in households in Greater Vitória, grouped into census tracts classified as sub-normal clusters (AGSN) and non-sub-normal clusters (AGNSN ). The two groups were compared in terms of prevalence and associated factors. The significance level adopted was 5%. Results: The prevalence found in the AGSN was 12.05% (95% CI from 9.59 to 14.50%), and in the AGNSN group it was 10.23% (95% CI from 7.97% to 12.50% ) this difference was not statistically significant (p = 0.273). Comparing the sociodemographic characteristics, more people who declare themselves to be of mixed race were found in the SGNA, a higher percentage of illiterates and people with only elementary education, greater number of residents per household, longer stay in public transport, sharing a bathroom with another household , fewer bedrooms per residence and higher frequency of irregular water supply when compared to AGNSN(P<0.05). Conclusions: The epidemiological characteristics of the SNGA residents show the social inequalities that can hinder control measures in a pandemic situation.Objetivos: estimar prevalência de infecção pelo SARS-CoV-2 em residentes na região da Grande Vitória moradores de aglomerados subnormais e não subnormais; e, comparar características sociodemográficas e clínicas dos residentes totais (infectados e não infectados com o SARS-CoV-2), entre esses aglomerados. Método: Estudo de prevalência de base populacional, por meio de teste sorológico realizado em 2020, com unidade de estudo em domicílios da Grande Vitória, agrupados em setores censitários classificados como Aglomerados sub-normais (AGSN) e os Aglomerados não sub-normais (AGNSN). Os dois grupos foram comparados quanto a prevalência e fatores associados. O nível de significância adotado foi de 5%. Resultados: A prevalência encontrada no AGSN foi 12,05% (IC 95% de 9,59 a 14,50%), e no grupo AGNSN foi 10,23% (IC 95% de 7,97% a 12,50%) esta diferença não foi estatisticamente significante (p = 0,273). Comparando-se as características sociodemográficas foram encontradas nos AGSN mais pessoas que se autodeclaram da raça cor parda, percentual maior de analfabetos e pessoas apenas com ensino fundamental, maior número de moradores por domicílio, maior permanência em transporte coletivo, compartilhamento de banheiro com outro domicílio, menos dormitórios por residência e maior frequência de abastecimento irregular de água quando comparadas aos AGNSN(P<0,05). Conclusões: As características epidemiológicas dos moradores de AGSN evidenciam as desigualdades sociais que podem dificultar as medidas de controle em uma situação de pandemia.SciELO PreprintsSciELO PreprintsSciELO Preprints2021-06-10info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/244610.1590/SciELOPreprints.2446porhttps://preprints.scielo.org/index.php/scielo/article/view/2446/4214Copyright (c) 2021 Ethel Maciel, Pablo Medeiros Jabor , Laylla Ribeiro Macedo, Gilton Luiz Almada, Raphael Lubiana Zanotti , Crispim Cerutti Junior , Cristiana Costa Gomes , Filomena Euridice Carvalho de Alencar , Tania Reuter, Vera Lucia Gomes de Andrade , Orlei Amaral Cardoso , Nésio Fernandes de Medeiros Junior , Whisllay Maciel Bastos , Marlon Neves Bertolani , Leticia Tabachi Silva , Eliana Zandonade https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMaciel, EthelJabor , Pablo MedeirosMacedo, Laylla RibeiroAlmada, Gilton LuizZanotti , Raphael LubianaCerutti Junior , Crispim Gomes , Cristiana CostaAlencar , Filomena Euridice Carvalho deReuter, Tania Andrade , Vera Lucia Gomes deCardoso , Orlei AmaralMedeiros Junior , Nésio Fernandes deBastos , Whisllay MacielBertolani , Marlon NevesSilva , Leticia TabachiZandonade , Eliana reponame:SciELO Preprintsinstname:SciELOinstacron:SCI2021-06-04T14:33:24Zoai:ops.preprints.scielo.org:preprint/2446Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2021-06-04T14:33:24SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil Covid-19 em áreas de aglomerados subnormais e não subnormais no Espírito Santo, Brasil |
title |
Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil |
spellingShingle |
Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil Maciel, Ethel Infecções por Coronavirus Prevalência Habitação Distribuição Espacial da População Coronavirus Infections Prevalence Housing Population spacial distribution |
title_short |
Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil |
title_full |
Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil |
title_fullStr |
Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil |
title_full_unstemmed |
Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil |
title_sort |
Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil |
author |
Maciel, Ethel |
author_facet |
Maciel, Ethel Jabor , Pablo Medeiros Macedo, Laylla Ribeiro Almada, Gilton Luiz Zanotti , Raphael Lubiana Cerutti Junior , Crispim Gomes , Cristiana Costa Alencar , Filomena Euridice Carvalho de Reuter, Tania Andrade , Vera Lucia Gomes de Cardoso , Orlei Amaral Medeiros Junior , Nésio Fernandes de Bastos , Whisllay Maciel Bertolani , Marlon Neves Silva , Leticia Tabachi Zandonade , Eliana |
author_role |
author |
author2 |
Jabor , Pablo Medeiros Macedo, Laylla Ribeiro Almada, Gilton Luiz Zanotti , Raphael Lubiana Cerutti Junior , Crispim Gomes , Cristiana Costa Alencar , Filomena Euridice Carvalho de Reuter, Tania Andrade , Vera Lucia Gomes de Cardoso , Orlei Amaral Medeiros Junior , Nésio Fernandes de Bastos , Whisllay Maciel Bertolani , Marlon Neves Silva , Leticia Tabachi Zandonade , Eliana |
author2_role |
author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Maciel, Ethel Jabor , Pablo Medeiros Macedo, Laylla Ribeiro Almada, Gilton Luiz Zanotti , Raphael Lubiana Cerutti Junior , Crispim Gomes , Cristiana Costa Alencar , Filomena Euridice Carvalho de Reuter, Tania Andrade , Vera Lucia Gomes de Cardoso , Orlei Amaral Medeiros Junior , Nésio Fernandes de Bastos , Whisllay Maciel Bertolani , Marlon Neves Silva , Leticia Tabachi Zandonade , Eliana |
dc.subject.por.fl_str_mv |
Infecções por Coronavirus Prevalência Habitação Distribuição Espacial da População Coronavirus Infections Prevalence Housing Population spacial distribution |
topic |
Infecções por Coronavirus Prevalência Habitação Distribuição Espacial da População Coronavirus Infections Prevalence Housing Population spacial distribution |
description |
Objectives: to estimate the prevalence of SARS-CoV-2 infection in residents of the Greater Vitória region living in subnormal and non-subnormal agglomerations; and, compare sociodemographic and clinical characteristics of total residents (infected and not infected with SARS-CoV-2), among these clusters. Method: Population-based prevalence study, through serological testing carried out in 2020, with a study unit in households in Greater Vitória, grouped into census tracts classified as sub-normal clusters (AGSN) and non-sub-normal clusters (AGNSN ). The two groups were compared in terms of prevalence and associated factors. The significance level adopted was 5%. Results: The prevalence found in the AGSN was 12.05% (95% CI from 9.59 to 14.50%), and in the AGNSN group it was 10.23% (95% CI from 7.97% to 12.50% ) this difference was not statistically significant (p = 0.273). Comparing the sociodemographic characteristics, more people who declare themselves to be of mixed race were found in the SGNA, a higher percentage of illiterates and people with only elementary education, greater number of residents per household, longer stay in public transport, sharing a bathroom with another household , fewer bedrooms per residence and higher frequency of irregular water supply when compared to AGNSN(P<0.05). Conclusions: The epidemiological characteristics of the SNGA residents show the social inequalities that can hinder control measures in a pandemic situation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-10 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/2446 10.1590/SciELOPreprints.2446 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/2446 |
identifier_str_mv |
10.1590/SciELOPreprints.2446 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/2446/4214 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047823502409728 |