Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil

Detalhes bibliográficos
Autor(a) principal: Maciel, Ethel
Data de Publicação: 2021
Outros Autores: Jabor , Pablo Medeiros, Macedo, Laylla Ribeiro, Almada, Gilton Luiz, Zanotti , Raphael Lubiana, Cerutti Junior , Crispim, Gomes , Cristiana Costa, Alencar , Filomena Euridice Carvalho de, Reuter, Tania, Andrade , Vera Lucia Gomes de, Cardoso , Orlei Amaral, Medeiros Junior , Nésio Fernandes de, Bastos , Whisllay Maciel, Bertolani , Marlon Neves, Silva , Leticia Tabachi, Zandonade , Eliana
Tipo de documento: preprint
Idioma: por
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/2446
Resumo: Objectives: to estimate the prevalence of SARS-CoV-2 infection in residents of the Greater Vitória region living in subnormal and non-subnormal agglomerations; and, compare sociodemographic and clinical characteristics of total residents (infected and not infected with SARS-CoV-2), among these clusters. Method: Population-based prevalence study, through serological testing carried out in 2020, with a study unit in households in Greater Vitória, grouped into census tracts classified as sub-normal clusters (AGSN) and non-sub-normal clusters (AGNSN ). The two groups were compared in terms of prevalence and associated factors. The significance level adopted was 5%. Results: The prevalence found in the AGSN was 12.05% (95% CI from 9.59 to 14.50%), and in the AGNSN group it was 10.23% (95% CI from 7.97% to 12.50% ) this difference was not statistically significant (p = 0.273). Comparing the sociodemographic characteristics, more people who declare themselves to be of mixed race were found in the SGNA, a higher percentage of illiterates and people with only elementary education, greater number of residents per household, longer stay in public transport, sharing a bathroom with another household , fewer bedrooms per residence and higher frequency of irregular water supply when compared to AGNSN(P<0.05). Conclusions: The epidemiological characteristics of the SNGA residents show the social inequalities that can hinder control measures in a pandemic situation.
id SCI-1_3086e9409d8b1067fd816e21f08b643a
oai_identifier_str oai:ops.preprints.scielo.org:preprint/2446
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, BrazilCovid-19 em áreas de aglomerados subnormais e não subnormais no Espírito Santo, BrasilInfecções por CoronavirusPrevalênciaHabitaçãoDistribuição Espacial da PopulaçãoCoronavirus InfectionsPrevalenceHousingPopulation spacial distributionObjectives: to estimate the prevalence of SARS-CoV-2 infection in residents of the Greater Vitória region living in subnormal and non-subnormal agglomerations; and, compare sociodemographic and clinical characteristics of total residents (infected and not infected with SARS-CoV-2), among these clusters. Method: Population-based prevalence study, through serological testing carried out in 2020, with a study unit in households in Greater Vitória, grouped into census tracts classified as sub-normal clusters (AGSN) and non-sub-normal clusters (AGNSN ). The two groups were compared in terms of prevalence and associated factors. The significance level adopted was 5%. Results: The prevalence found in the AGSN was 12.05% (95% CI from 9.59 to 14.50%), and in the AGNSN group it was 10.23% (95% CI from 7.97% to 12.50% ) this difference was not statistically significant (p = 0.273). Comparing the sociodemographic characteristics, more people who declare themselves to be of mixed race were found in the SGNA, a higher percentage of illiterates and people with only elementary education, greater number of residents per household, longer stay in public transport, sharing a bathroom with another household , fewer bedrooms per residence and higher frequency of irregular water supply when compared to AGNSN(P<0.05). Conclusions: The epidemiological characteristics of the SNGA residents show the social inequalities that can hinder control measures in a pandemic situation.Objetivos: estimar prevalência de infecção pelo SARS-CoV-2 em residentes na região da Grande Vitória moradores de aglomerados subnormais e não subnormais; e, comparar características sociodemográficas e clínicas dos residentes totais (infectados e não infectados com o SARS-CoV-2), entre esses aglomerados.  Método: Estudo de prevalência de base populacional, por meio de teste sorológico realizado em 2020, com unidade de estudo em domicílios da Grande Vitória, agrupados em setores censitários classificados como Aglomerados sub-normais (AGSN) e os Aglomerados não sub-normais (AGNSN). Os dois grupos foram comparados quanto a prevalência e fatores associados. O nível de significância adotado foi de 5%. Resultados: A prevalência encontrada no AGSN foi 12,05% (IC 95% de 9,59 a 14,50%), e no grupo AGNSN foi 10,23% (IC 95% de 7,97% a 12,50%) esta diferença não foi estatisticamente significante (p = 0,273). Comparando-se as características sociodemográficas foram encontradas nos AGSN mais pessoas que se autodeclaram da raça cor parda, percentual maior de analfabetos e pessoas apenas com ensino fundamental, maior número de moradores por domicílio, maior permanência em transporte coletivo, compartilhamento de banheiro com outro domicílio, menos dormitórios por residência e maior frequência de abastecimento irregular de água quando comparadas aos AGNSN(P<0,05). Conclusões: As características epidemiológicas dos moradores de AGSN evidenciam as desigualdades sociais que podem dificultar as medidas de controle em uma situação de pandemia.SciELO PreprintsSciELO PreprintsSciELO Preprints2021-06-10info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/244610.1590/SciELOPreprints.2446porhttps://preprints.scielo.org/index.php/scielo/article/view/2446/4214Copyright (c) 2021 Ethel Maciel, Pablo Medeiros Jabor , Laylla Ribeiro Macedo, Gilton Luiz Almada, Raphael Lubiana Zanotti , Crispim Cerutti Junior , Cristiana Costa Gomes , Filomena Euridice Carvalho de Alencar , Tania Reuter, Vera Lucia Gomes de Andrade , Orlei Amaral Cardoso , Nésio Fernandes de Medeiros Junior , Whisllay Maciel Bastos , Marlon Neves Bertolani , Leticia Tabachi Silva , Eliana Zandonade https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMaciel, EthelJabor , Pablo MedeirosMacedo, Laylla RibeiroAlmada, Gilton LuizZanotti , Raphael LubianaCerutti Junior , Crispim Gomes , Cristiana CostaAlencar , Filomena Euridice Carvalho deReuter, Tania Andrade , Vera Lucia Gomes deCardoso , Orlei AmaralMedeiros Junior , Nésio Fernandes deBastos , Whisllay MacielBertolani , Marlon NevesSilva , Leticia TabachiZandonade , Eliana reponame:SciELO Preprintsinstname:SciELOinstacron:SCI2021-06-04T14:33:24Zoai:ops.preprints.scielo.org:preprint/2446Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2021-06-04T14:33:24SciELO Preprints - SciELOfalse
dc.title.none.fl_str_mv Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil
Covid-19 em áreas de aglomerados subnormais e não subnormais no Espírito Santo, Brasil
title Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil
spellingShingle Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil
Maciel, Ethel
Infecções por Coronavirus
Prevalência
Habitação
Distribuição Espacial da População
Coronavirus Infections
Prevalence
Housing
Population spacial distribution
title_short Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil
title_full Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil
title_fullStr Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil
title_full_unstemmed Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil
title_sort Covid-19 in subnormal and non-subnormal cluster areas in Espírito Santo, Brazil
author Maciel, Ethel
author_facet Maciel, Ethel
Jabor , Pablo Medeiros
Macedo, Laylla Ribeiro
Almada, Gilton Luiz
Zanotti , Raphael Lubiana
Cerutti Junior , Crispim
Gomes , Cristiana Costa
Alencar , Filomena Euridice Carvalho de
Reuter, Tania
Andrade , Vera Lucia Gomes de
Cardoso , Orlei Amaral
Medeiros Junior , Nésio Fernandes de
Bastos , Whisllay Maciel
Bertolani , Marlon Neves
Silva , Leticia Tabachi
Zandonade , Eliana
author_role author
author2 Jabor , Pablo Medeiros
Macedo, Laylla Ribeiro
Almada, Gilton Luiz
Zanotti , Raphael Lubiana
Cerutti Junior , Crispim
Gomes , Cristiana Costa
Alencar , Filomena Euridice Carvalho de
Reuter, Tania
Andrade , Vera Lucia Gomes de
Cardoso , Orlei Amaral
Medeiros Junior , Nésio Fernandes de
Bastos , Whisllay Maciel
Bertolani , Marlon Neves
Silva , Leticia Tabachi
Zandonade , Eliana
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Maciel, Ethel
Jabor , Pablo Medeiros
Macedo, Laylla Ribeiro
Almada, Gilton Luiz
Zanotti , Raphael Lubiana
Cerutti Junior , Crispim
Gomes , Cristiana Costa
Alencar , Filomena Euridice Carvalho de
Reuter, Tania
Andrade , Vera Lucia Gomes de
Cardoso , Orlei Amaral
Medeiros Junior , Nésio Fernandes de
Bastos , Whisllay Maciel
Bertolani , Marlon Neves
Silva , Leticia Tabachi
Zandonade , Eliana
dc.subject.por.fl_str_mv Infecções por Coronavirus
Prevalência
Habitação
Distribuição Espacial da População
Coronavirus Infections
Prevalence
Housing
Population spacial distribution
topic Infecções por Coronavirus
Prevalência
Habitação
Distribuição Espacial da População
Coronavirus Infections
Prevalence
Housing
Population spacial distribution
description Objectives: to estimate the prevalence of SARS-CoV-2 infection in residents of the Greater Vitória region living in subnormal and non-subnormal agglomerations; and, compare sociodemographic and clinical characteristics of total residents (infected and not infected with SARS-CoV-2), among these clusters. Method: Population-based prevalence study, through serological testing carried out in 2020, with a study unit in households in Greater Vitória, grouped into census tracts classified as sub-normal clusters (AGSN) and non-sub-normal clusters (AGNSN ). The two groups were compared in terms of prevalence and associated factors. The significance level adopted was 5%. Results: The prevalence found in the AGSN was 12.05% (95% CI from 9.59 to 14.50%), and in the AGNSN group it was 10.23% (95% CI from 7.97% to 12.50% ) this difference was not statistically significant (p = 0.273). Comparing the sociodemographic characteristics, more people who declare themselves to be of mixed race were found in the SGNA, a higher percentage of illiterates and people with only elementary education, greater number of residents per household, longer stay in public transport, sharing a bathroom with another household , fewer bedrooms per residence and higher frequency of irregular water supply when compared to AGNSN(P<0.05). Conclusions: The epidemiological characteristics of the SNGA residents show the social inequalities that can hinder control measures in a pandemic situation.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-10
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/2446
10.1590/SciELOPreprints.2446
url https://preprints.scielo.org/index.php/scielo/preprint/view/2446
identifier_str_mv 10.1590/SciELOPreprints.2446
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/article/view/2446/4214
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:SciELO
instacron:SCI
instname_str SciELO
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - SciELO
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1797047823502409728