Tarumã case study: Telemedicine and Artificial Intelligence applied for reducing Cardiovascular Diseases mortality and Health Cost Optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , |
Tipo de documento: | preprint |
Idioma: | por |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/3482 |
Resumo: | Background: Telemedicine supported by Artificial Intelligence (AI) has been an ally in the fight against cardiovascular disease. Tarumã, a municipality located in São Paulo, has been using these kinds of techniques as part of a project to decrease mortality from chronic non-communicable diseases (NCDs). Objective: This study aimed to analyze the results obtained after one year of implementation of telemedicine and AI in cardiology in the city of Tarumã. Methods: All the data was supplied by the companies “iSalut” and “Portal Telemedicina”, the Municipal Health Department, the health surveillance department and the company 4R Municipality Software Advisory Service. To verify the significance of data, an ANOVA analysis was carried out for non-parametric data. secondary data have been also related to demographic indicators and healthy care on national basis. Results: As a result, there was a decrease of 21% in premature deaths from cardiovascular diseases and of 25% in premature deaths from circulatory diseases. In addition, between January and August 2020, the number of deaths from CNCD dropped by 45% when compared to the same period in 2019. By relating the previous years, the ANOVA analysis showed a significance F(4,113)=14, 30 (p = 0.001), and the greatest difference was regarding the circulatory system diseases. Besides, the average cost per consultation decreased 60% and the reduction in the number of trips per patient represented a saving of R$5,300.00 in fuel expenses. Conclusion: It can be concluded that in addition to enhancing the patient care by health services, telemedicine reduced the revenue related to health expenses and optimized the use of resources by the municipality. |
id |
SCI-1_3cdda3b1dd52d09df9b249aeaa7d4cca |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/3482 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Tarumã case study: Telemedicine and Artificial Intelligence applied for reducing Cardiovascular Diseases mortality and Health Cost OptimizationEstudo de caso de Tarumã: O uso de telemedicina e Inteligência Artificial para redução da mortalidade por doenças cardíacas e otimização dos recursos em saúdeTelemedicinaInteligência ArtificialDoenças CardíacasOtimização de Recursos em saúdeTelemedicineArtificial IntelligenceCardiovascular DiseasesHealth Cost OptimizationBackground: Telemedicine supported by Artificial Intelligence (AI) has been an ally in the fight against cardiovascular disease. Tarumã, a municipality located in São Paulo, has been using these kinds of techniques as part of a project to decrease mortality from chronic non-communicable diseases (NCDs). Objective: This study aimed to analyze the results obtained after one year of implementation of telemedicine and AI in cardiology in the city of Tarumã. Methods: All the data was supplied by the companies “iSalut” and “Portal Telemedicina”, the Municipal Health Department, the health surveillance department and the company 4R Municipality Software Advisory Service. To verify the significance of data, an ANOVA analysis was carried out for non-parametric data. secondary data have been also related to demographic indicators and healthy care on national basis. Results: As a result, there was a decrease of 21% in premature deaths from cardiovascular diseases and of 25% in premature deaths from circulatory diseases. In addition, between January and August 2020, the number of deaths from CNCD dropped by 45% when compared to the same period in 2019. By relating the previous years, the ANOVA analysis showed a significance F(4,113)=14, 30 (p = 0.001), and the greatest difference was regarding the circulatory system diseases. Besides, the average cost per consultation decreased 60% and the reduction in the number of trips per patient represented a saving of R$5,300.00 in fuel expenses. Conclusion: It can be concluded that in addition to enhancing the patient care by health services, telemedicine reduced the revenue related to health expenses and optimized the use of resources by the municipality.Introdução: A telemedicina apoiada por Inteligência Artificial (IA) tem sido aliada na luta contra as doenças cardiovasculares. Tarumã, município localizado em São Paulo, tem utilizado essas técnicas como parte de um projeto para diminuir a mortalidade por doenças crônicas não transmissíveis (DCNT). Objetivos: Analisar os resultados obtidos após um ano de implementação da telemedicina e da IA na cardiologia no município de Tarumã. Métodos: Foram utilizados dados fornecidos pelas empresas “iSalut” e "Portal Telemedicina", Secretaria Municipal de Saúde, Vigilância Sanitária e a empresa 4R Sistemas e Assessoria de município. Para verificar a significância dos dados foi realizada uma análise ANOVA para dados não paramétricos. Também foram acessados dados secundários relacionados aos índices demográficos populacionais e serviços de saúde em bases nacionais. Resultados: Houve diminuição de 21% dos óbitos prematuros por doenças cardiovasculares e 25% dos óbitos prematuros por doenças circulatórias. Além disso, entre os meses de janeiro e agosto de 2020, o número de óbitos por DCNT caiu em 45% quando comparado com o mesmo período em 2019. A análise ANOVA, relacionando os anos anteriores demonstrou uma significância F(4,113)=14,30 (p =0,001), sendo que a maior diferença foi em relação às doenças do aparelho circulatório. Além disso, o custo médio por consulta diminuiu 60% e a redução do número de deslocamento por pacientes representou uma economia de R$5.300,00 em gastos em combustível. Conclusões: Com isso, pode-se concluir que a telemedicina além de potencializar a prestação de cuidados ao paciente pelos serviços de saúde, diminuiu a receita relacionada aos gastos em saúde e otimizou a utilização de recursos pelo município.SciELO PreprintsSciELO PreprintsSciELO Preprints2022-01-20info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/348210.1590/SciELOPreprints.3482porhttps://preprints.scielo.org/index.php/scielo/article/view/3482/6424Copyright (c) 2022 Fernanda Amaral, Elizabeth Fernandes, Nicholas Drabowski, Marcio Alves, André Nunes, Elvira da Silva, Marcos Bastos, Jorciene Romera, Rafael de Castro Figueroahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAmaral, FernandaFernandes, ElizabethDrabowski, NicholasAlves, MarcioNunes, AndréSilva, Elvira daBastos, MarcosRomera, JorcieneFigueroa, Rafael de Castroreponame:SciELO Preprintsinstname:SciELOinstacron:SCI2022-01-17T17:03:06Zoai:ops.preprints.scielo.org:preprint/3482Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2022-01-17T17:03:06SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Tarumã case study: Telemedicine and Artificial Intelligence applied for reducing Cardiovascular Diseases mortality and Health Cost Optimization Estudo de caso de Tarumã: O uso de telemedicina e Inteligência Artificial para redução da mortalidade por doenças cardíacas e otimização dos recursos em saúde |
title |
Tarumã case study: Telemedicine and Artificial Intelligence applied for reducing Cardiovascular Diseases mortality and Health Cost Optimization |
spellingShingle |
Tarumã case study: Telemedicine and Artificial Intelligence applied for reducing Cardiovascular Diseases mortality and Health Cost Optimization Amaral, Fernanda Telemedicina Inteligência Artificial Doenças Cardíacas Otimização de Recursos em saúde Telemedicine Artificial Intelligence Cardiovascular Diseases Health Cost Optimization |
title_short |
Tarumã case study: Telemedicine and Artificial Intelligence applied for reducing Cardiovascular Diseases mortality and Health Cost Optimization |
title_full |
Tarumã case study: Telemedicine and Artificial Intelligence applied for reducing Cardiovascular Diseases mortality and Health Cost Optimization |
title_fullStr |
Tarumã case study: Telemedicine and Artificial Intelligence applied for reducing Cardiovascular Diseases mortality and Health Cost Optimization |
title_full_unstemmed |
Tarumã case study: Telemedicine and Artificial Intelligence applied for reducing Cardiovascular Diseases mortality and Health Cost Optimization |
title_sort |
Tarumã case study: Telemedicine and Artificial Intelligence applied for reducing Cardiovascular Diseases mortality and Health Cost Optimization |
author |
Amaral, Fernanda |
author_facet |
Amaral, Fernanda Fernandes, Elizabeth Drabowski, Nicholas Alves, Marcio Nunes, André Silva, Elvira da Bastos, Marcos Romera, Jorciene Figueroa, Rafael de Castro |
author_role |
author |
author2 |
Fernandes, Elizabeth Drabowski, Nicholas Alves, Marcio Nunes, André Silva, Elvira da Bastos, Marcos Romera, Jorciene Figueroa, Rafael de Castro |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Amaral, Fernanda Fernandes, Elizabeth Drabowski, Nicholas Alves, Marcio Nunes, André Silva, Elvira da Bastos, Marcos Romera, Jorciene Figueroa, Rafael de Castro |
dc.subject.por.fl_str_mv |
Telemedicina Inteligência Artificial Doenças Cardíacas Otimização de Recursos em saúde Telemedicine Artificial Intelligence Cardiovascular Diseases Health Cost Optimization |
topic |
Telemedicina Inteligência Artificial Doenças Cardíacas Otimização de Recursos em saúde Telemedicine Artificial Intelligence Cardiovascular Diseases Health Cost Optimization |
description |
Background: Telemedicine supported by Artificial Intelligence (AI) has been an ally in the fight against cardiovascular disease. Tarumã, a municipality located in São Paulo, has been using these kinds of techniques as part of a project to decrease mortality from chronic non-communicable diseases (NCDs). Objective: This study aimed to analyze the results obtained after one year of implementation of telemedicine and AI in cardiology in the city of Tarumã. Methods: All the data was supplied by the companies “iSalut” and “Portal Telemedicina”, the Municipal Health Department, the health surveillance department and the company 4R Municipality Software Advisory Service. To verify the significance of data, an ANOVA analysis was carried out for non-parametric data. secondary data have been also related to demographic indicators and healthy care on national basis. Results: As a result, there was a decrease of 21% in premature deaths from cardiovascular diseases and of 25% in premature deaths from circulatory diseases. In addition, between January and August 2020, the number of deaths from CNCD dropped by 45% when compared to the same period in 2019. By relating the previous years, the ANOVA analysis showed a significance F(4,113)=14, 30 (p = 0.001), and the greatest difference was regarding the circulatory system diseases. Besides, the average cost per consultation decreased 60% and the reduction in the number of trips per patient represented a saving of R$5,300.00 in fuel expenses. Conclusion: It can be concluded that in addition to enhancing the patient care by health services, telemedicine reduced the revenue related to health expenses and optimized the use of resources by the municipality. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-20 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/3482 10.1590/SciELOPreprints.3482 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/3482 |
identifier_str_mv |
10.1590/SciELOPreprints.3482 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/3482/6424 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047826553765888 |