Hierarchical Component Models in Partial Least Squares Structural Equation Modeling: guidelines for second-order constructs

Detalhes bibliográficos
Autor(a) principal: Lacruz, Adonai José
Data de Publicação: 2022
Outros Autores: Assis, Walter Macêdo de, Guedes, Thiago de Andrade
Tipo de documento: preprint
Idioma: por
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/3978
Resumo: Partial Least Squares Structural Equation Modeling (PLS-SEM) has been used by Business Administration researchers to model hierarchical constructs. However, through a bibliographic survey (in papers published in 2021 in the core Brazilian Business Administration journals classified as A2 in the Qualis/Capes classification system for quality of academic production) and in previous studies, the inadequacy of the way for specificating, estimating, validating and reporting has been identified. In addition, from the literature review, it was noticed the absence of clear guidelines, especially linked to the way of measuring the higher-order component of hierarchical constructs. Addressing this concern, this paper provides guidance on specifying, estimating, evaluating and reporting models of hierarchical components in PLS-SEM,specifically for second-order constructs. This guidance can support scholars and researchers who use higher-order constructs in their studies.
id SCI-1_3e7704b4257f75ddc124d341e1fa14ce
oai_identifier_str oai:ops.preprints.scielo.org:preprint/3978
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling Hierarchical Component Models in Partial Least Squares Structural Equation Modeling: guidelines for second-order constructsModelos de Componentes Hierárquicos em Modelagem de Equações Estruturais com Mínimos Quadrados Parciais: orientações para construtos de segunda ordemModelagem de equações estruturais com mínimos quadrados parciaisModelos de componentes hierárquicosModelos de ordem superiorConstrutos de segunda ordemPartial Least Squares Structural Equation ModelingPLS-SEMHierarchical component modelsHigher-order modelsSecond-order constructsPartial Least Squares Structural Equation Modeling (PLS-SEM) has been used by Business Administration researchers to model hierarchical constructs. However, through a bibliographic survey (in papers published in 2021 in the core Brazilian Business Administration journals classified as A2 in the Qualis/Capes classification system for quality of academic production) and in previous studies, the inadequacy of the way for specificating, estimating, validating and reporting has been identified. In addition, from the literature review, it was noticed the absence of clear guidelines, especially linked to the way of measuring the higher-order component of hierarchical constructs. Addressing this concern, this paper provides guidance on specifying, estimating, evaluating and reporting models of hierarchical components in PLS-SEM,specifically for second-order constructs. This guidance can support scholars and researchers who use higher-order constructs in their studies.A modelagem de equações estruturais com mínimos quadrados parciais (Partial Least Squares Structural Equation Modeling – PLS-SEM) tem sido empregada para modelar construtos hierárquicos em estudos na área de Administração. No entanto, no levantamento realizado nesta pesquisa (em artigos publicados em 2021 nos periódicos core da área de Administração classificados como A2 no Qualis/Capes) e em estudos anteriores foi identificada a inadequação da forma de relatar como as pesquisas foram realizadas. Além disso, da revisão da literatura, percebeu-se a ausência de diretrizes claras, sobretudo em relação a forma de mensuração do componente de ordem superior de construtos hierárquicos. Como resposta a isso, apresenta-se neste artigo orientações sobre como especificar, estimar e avaliar modelos de componentes hierárquicos em PLS-SEM, mais especificamente para construtos de segunda ordem, e também sobre como relatar a configuração utilizada e os resultados obtidos. Essas orietações podem apoiar autores a aumentar a transparência dos procedimentos metodológicos dos seus estudos, bem como podem auxiliar editores e revisores no desenvolvimento de questões específicas que podem ser aprimoradas em processos de arbitragem científica, contribuindo, dessa forma, para confiabilidade do conhecimento acadêmico produzido.SciELO PreprintsSciELO PreprintsSciELO Preprints2022-05-17info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/397810.1590/SciELOPreprints.3978porhttps://preprints.scielo.org/index.php/scielo/article/view/3978/7838Copyright (c) 2022 Adonai José Lacruz, Walter Macêdo de Assis, Thiago de Andrade Guedeshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessLacruz, Adonai JoséAssis, Walter Macêdo deGuedes, Thiago de Andradereponame:SciELO Preprintsinstname:SciELOinstacron:SCI2022-04-19T10:33:58Zoai:ops.preprints.scielo.org:preprint/3978Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2022-04-19T10:33:58SciELO Preprints - SciELOfalse
dc.title.none.fl_str_mv Hierarchical Component Models in Partial Least Squares Structural Equation Modeling: guidelines for second-order constructs
Modelos de Componentes Hierárquicos em Modelagem de Equações Estruturais com Mínimos Quadrados Parciais: orientações para construtos de segunda ordem
title Hierarchical Component Models in Partial Least Squares Structural Equation Modeling: guidelines for second-order constructs
spellingShingle Hierarchical Component Models in Partial Least Squares Structural Equation Modeling: guidelines for second-order constructs
Lacruz, Adonai José
Modelagem de equações estruturais com mínimos quadrados parciais
Modelos de componentes hierárquicos
Modelos de ordem superior
Construtos de segunda ordem
Partial Least Squares Structural Equation Modeling
PLS-SEM
Hierarchical component models
Higher-order models
Second-order constructs
title_short Hierarchical Component Models in Partial Least Squares Structural Equation Modeling: guidelines for second-order constructs
title_full Hierarchical Component Models in Partial Least Squares Structural Equation Modeling: guidelines for second-order constructs
title_fullStr Hierarchical Component Models in Partial Least Squares Structural Equation Modeling: guidelines for second-order constructs
title_full_unstemmed Hierarchical Component Models in Partial Least Squares Structural Equation Modeling: guidelines for second-order constructs
title_sort Hierarchical Component Models in Partial Least Squares Structural Equation Modeling: guidelines for second-order constructs
author Lacruz, Adonai José
author_facet Lacruz, Adonai José
Assis, Walter Macêdo de
Guedes, Thiago de Andrade
author_role author
author2 Assis, Walter Macêdo de
Guedes, Thiago de Andrade
author2_role author
author
dc.contributor.author.fl_str_mv Lacruz, Adonai José
Assis, Walter Macêdo de
Guedes, Thiago de Andrade
dc.subject.por.fl_str_mv Modelagem de equações estruturais com mínimos quadrados parciais
Modelos de componentes hierárquicos
Modelos de ordem superior
Construtos de segunda ordem
Partial Least Squares Structural Equation Modeling
PLS-SEM
Hierarchical component models
Higher-order models
Second-order constructs
topic Modelagem de equações estruturais com mínimos quadrados parciais
Modelos de componentes hierárquicos
Modelos de ordem superior
Construtos de segunda ordem
Partial Least Squares Structural Equation Modeling
PLS-SEM
Hierarchical component models
Higher-order models
Second-order constructs
description Partial Least Squares Structural Equation Modeling (PLS-SEM) has been used by Business Administration researchers to model hierarchical constructs. However, through a bibliographic survey (in papers published in 2021 in the core Brazilian Business Administration journals classified as A2 in the Qualis/Capes classification system for quality of academic production) and in previous studies, the inadequacy of the way for specificating, estimating, validating and reporting has been identified. In addition, from the literature review, it was noticed the absence of clear guidelines, especially linked to the way of measuring the higher-order component of hierarchical constructs. Addressing this concern, this paper provides guidance on specifying, estimating, evaluating and reporting models of hierarchical components in PLS-SEM,specifically for second-order constructs. This guidance can support scholars and researchers who use higher-order constructs in their studies.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-17
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/3978
10.1590/SciELOPreprints.3978
url https://preprints.scielo.org/index.php/scielo/preprint/view/3978
identifier_str_mv 10.1590/SciELOPreprints.3978
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/article/view/3978/7838
dc.rights.driver.fl_str_mv Copyright (c) 2022 Adonai José Lacruz, Walter Macêdo de Assis, Thiago de Andrade Guedes
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Adonai José Lacruz, Walter Macêdo de Assis, Thiago de Andrade Guedes
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:SciELO
instacron:SCI
instname_str SciELO
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - SciELO
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1797047828024918016