Polarization, Hyperpartisanship and Echo Chambers: How the disinformation about Covid-19 circulates on Twitter
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | preprint |
Idioma: | por |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/1154 |
Resumo: | In this paper, we analyze the circulation of disinformative links about the Covid-19 pandemic on Twitter, using a dataset of 159,560 links collected using Twitter’s API between the months of March and July 2020. By mapping the network and observing the neighborhood of links and the most shared links, we observed a polarization and reduction of the circulation of links according to their direction (either pro hydroxychloroquine or anti hydroxychloroquine). The results also show more activity in the dissemination of pro hydroxychloroquine links, a group where we could also find more disinformation and more hyperpartisan media. Likewise, the circulation of traditional and institutional media is quite reduced in this group, strengthening the association between hyperpartisan media and disinformation. |
id |
SCI-1_50ecadc674e18b36e863b78b076a7aa1 |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/1154 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Polarization, Hyperpartisanship and Echo Chambers: How the disinformation about Covid-19 circulates on TwitterPolarización, hiperpartidismo y cámaras de eco: cómo circula la desinformación sobre Covid-19 en TwitterPolarização, Hiperpartidarismo e Câmaras de Eco: Como circula a Desinformação sobre Covid-19 no TwitterDesinformaçãoTwitterCâmaras de EcoPolarizaçãoLinksDisinformationTwitterEcho chambersPolarizationLinksDesinformacionTwitterPolarizaciónCámaras de ecoLinksIn this paper, we analyze the circulation of disinformative links about the Covid-19 pandemic on Twitter, using a dataset of 159,560 links collected using Twitter’s API between the months of March and July 2020. By mapping the network and observing the neighborhood of links and the most shared links, we observed a polarization and reduction of the circulation of links according to their direction (either pro hydroxychloroquine or anti hydroxychloroquine). The results also show more activity in the dissemination of pro hydroxychloroquine links, a group where we could also find more disinformation and more hyperpartisan media. Likewise, the circulation of traditional and institutional media is quite reduced in this group, strengthening the association between hyperpartisan media and disinformation.En este artículo, analizamos la circulación de enlaces desinformativos sobre la pandemia Covid-19 en Twitter, utilizando un conjunto de datos de 159.560 enlaces recopilados mediante la API de Twitter entre los meses de marzo y julio de 2020. Al mapear la red y observar el vecindario de enlaces y En los eslabones más compartidos, observamos una polarización y reducción de la circulación de los eslabones según su dirección (ya sea pro hidroxicloroquina o anti hidroxicloroquina). Los resultados también muestran más actividad en la difusión de enlaces pro hidroxicloroquina, un grupo donde también podríamos encontrar más desinformación y medios más hiperpartidistas. Asimismo, la circulación de medios tradicionales e institucionales es bastante reducida en este grupo, fortaleciendo la asociación entre medios hiperpartidistas y desinformación.Neste artigo, analisamos a circulação de links desinformativos sobre a pandemia de Covid-19 no Twitter, a partir de um conjunto de 159.560 links coletados da API do Twitter entre os meses de março e julho de 2020. Através de um mapeamento da rede e da observação da vizinhança dos links e dos links mais compartilhados, observamos uma polarização e redução da circulação dos links de acordo com seu sentido (pró-hidroxicloroquina ou anti-hidroxicloroquina). Os resultados também apontam para uma maior atividade na divulgação de links pró-hidroxicloroquina, grupo onde também circula a maior quantidade de desinformação e de veículos hiperpartidários. Do mesmo modo, a circulação de veículos de mídia tradicional e institucionais é bastante reduzida neste grupo, fortalecendo a associação entre mídia hiperpartidária e desinformação.SciELO PreprintsSciELO PreprintsSciELO Preprints2020-08-28info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/115410.1590/SciELOPreprints.1154porhttps://preprints.scielo.org/index.php/scielo/article/view/1154/1740Copyright (c) 2020 Raquel Recuero, Felipe Soares, Gabriela Zagohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessRecuero, RaquelSoares, FelipeZago, Gabrielareponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-08-28T14:35:07Zoai:ops.preprints.scielo.org:preprint/1154Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-08-28T14:35:07SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Polarization, Hyperpartisanship and Echo Chambers: How the disinformation about Covid-19 circulates on Twitter Polarización, hiperpartidismo y cámaras de eco: cómo circula la desinformación sobre Covid-19 en Twitter Polarização, Hiperpartidarismo e Câmaras de Eco: Como circula a Desinformação sobre Covid-19 no Twitter |
title |
Polarization, Hyperpartisanship and Echo Chambers: How the disinformation about Covid-19 circulates on Twitter |
spellingShingle |
Polarization, Hyperpartisanship and Echo Chambers: How the disinformation about Covid-19 circulates on Twitter Recuero, Raquel Desinformação Câmaras de Eco Polarização Links Disinformation Echo chambers Polarization Links Desinformacion Polarización Cámaras de eco Links |
title_short |
Polarization, Hyperpartisanship and Echo Chambers: How the disinformation about Covid-19 circulates on Twitter |
title_full |
Polarization, Hyperpartisanship and Echo Chambers: How the disinformation about Covid-19 circulates on Twitter |
title_fullStr |
Polarization, Hyperpartisanship and Echo Chambers: How the disinformation about Covid-19 circulates on Twitter |
title_full_unstemmed |
Polarization, Hyperpartisanship and Echo Chambers: How the disinformation about Covid-19 circulates on Twitter |
title_sort |
Polarization, Hyperpartisanship and Echo Chambers: How the disinformation about Covid-19 circulates on Twitter |
author |
Recuero, Raquel |
author_facet |
Recuero, Raquel Soares, Felipe Zago, Gabriela |
author_role |
author |
author2 |
Soares, Felipe Zago, Gabriela |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Recuero, Raquel Soares, Felipe Zago, Gabriela |
dc.subject.por.fl_str_mv |
Desinformação Câmaras de Eco Polarização Links Disinformation Echo chambers Polarization Links Desinformacion Polarización Cámaras de eco Links |
topic |
Desinformação Câmaras de Eco Polarização Links Disinformation Echo chambers Polarization Links Desinformacion Polarización Cámaras de eco Links |
description |
In this paper, we analyze the circulation of disinformative links about the Covid-19 pandemic on Twitter, using a dataset of 159,560 links collected using Twitter’s API between the months of March and July 2020. By mapping the network and observing the neighborhood of links and the most shared links, we observed a polarization and reduction of the circulation of links according to their direction (either pro hydroxychloroquine or anti hydroxychloroquine). The results also show more activity in the dissemination of pro hydroxychloroquine links, a group where we could also find more disinformation and more hyperpartisan media. Likewise, the circulation of traditional and institutional media is quite reduced in this group, strengthening the association between hyperpartisan media and disinformation. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-28 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/1154 10.1590/SciELOPreprints.1154 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/1154 |
identifier_str_mv |
10.1590/SciELOPreprints.1154 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/1154/1740 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Raquel Recuero, Felipe Soares, Gabriela Zago https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Raquel Recuero, Felipe Soares, Gabriela Zago https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047820042108928 |