Demand for ICU beds by COVID-19 in the Federal District, Brazil: an analysis of the impact of social distance measures with Monte Carlo simulations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | preprint |
Idioma: | por |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/574 |
Resumo: | Objectives: to analyze the impact of social distance policies on the spread of COVID-19 and the need for beds in intensive care units. Methods: based on a dynamic transition compartmental model and Monte Carlo simulations, propagation scenarios were built according to the level of adherence of the social distance measures in the context of the Federal District, Brazil. The parameter values were based on official sources, indexed databases and public data repositories. Results: maintaining adherence to the 58% isolation level was the only favorable scenario, with a peak of up to 792 (IQR: 447 to 1,262) ICU admissions between 11/05/2020 and 1/15/2021. The absence of social distance would imply a peak of up to 7,331 (IQR: 5,427 to 9,696) ICU admissions. Conclusion: the projections corroborate the positive effect of social distance measures and the applicability of indicators in their monitoring. |
id |
SCI-1_67232adcfbc0f6248655073f9b1443c6 |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/574 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Demand for ICU beds by COVID-19 in the Federal District, Brazil: an analysis of the impact of social distance measures with Monte Carlo simulationsDemanda de camas de UCI por COVID-19 en el Distrito Federal, Brasil: un análisis del impacto de las medidas de distancia social con simulaciones de Monte CarloDemanda por leitos de UTI pela COVID-19 no Distrito Federal, Brasil: uma análise do impacto das medidas de distanciamento social com simulações de Monte CarloCOVID-19Infecções por CoronavirusPrevisõesCOVID-19Coronavirus InfectionsForecastingCOVID-19Infecciones por CoronavirusPredicciónObjectives: to analyze the impact of social distance policies on the spread of COVID-19 and the need for beds in intensive care units. Methods: based on a dynamic transition compartmental model and Monte Carlo simulations, propagation scenarios were built according to the level of adherence of the social distance measures in the context of the Federal District, Brazil. The parameter values were based on official sources, indexed databases and public data repositories. Results: maintaining adherence to the 58% isolation level was the only favorable scenario, with a peak of up to 792 (IQR: 447 to 1,262) ICU admissions between 11/05/2020 and 1/15/2021. The absence of social distance would imply a peak of up to 7,331 (IQR: 5,427 to 9,696) ICU admissions. Conclusion: the projections corroborate the positive effect of social distance measures and the applicability of indicators in their monitoring.Objetivos: analizar el impacto de las políticas de distancia social en la propagación de COVID-19 y la necesidad de camas en unidades de cuidados intensivos. Métodos: con un modelo de transición dinámica y simulaciones de Monte Carlo, los escenarios de propagación se construyeron de acuerdo con el nivel de adherencia de las medidas de distancia social en el Distrito Federal, Brasil. Los parámetros se basaron en fuentes oficiales, bases de datos indexadas y repositorios de datos. Resultados: mantener la adherencia al nivel de aislamiento del 58% fue el único escenario favorable, con un pico de hasta 792 (IQR: 447 a 1,262) admisiones en la UCI entre el 11/05/2020 y el 15/1/2021. La ausencia de distancia implicaría un pico de 7,331 (IQR: 5,427 a 9,696) admisiones en la UCI. Conclusión: las proyecciones corroboran el efecto positivo de las medidas de distancia social y la aplicabilidad de los indicadores en su seguimiento.Objetivos: analisar o impacto das políticas de distanciamento social sobre a propagação da COVID-19 e a necessidade de leitos de unidades de terapia intensiva. Métodos: com um modelo compartimental de transição dinâmica e simulações de Monte Carlo foram construídos cenários de propagação de acordo com o nível de adesão das medidas de distanciamento social no contexto do Distrito Federal, Brasil. Os valores dos parâmetros foram baseados em fontes oficiais, bases indexadas e repositórios públicos de dados. Resultados: a manutenção da adesão ao nível de 58% de isolamento foi o único cenário favorável, com um pico de até 792 (IQR: 447 a 1.262) internações em UTI entre 05/11/2020 e 15/01/2021. A ausência do distanciamento implicaria um pico de até 7.331 (IQR: 5.427 a 9.696) internações em UTI. Conclusão: as projeções corroboram o efeito positivo das medidas de distanciamento social e a aplicabilidade de indicadores no seu monitoramento.SciELO PreprintsSciELO PreprintsSciELO Preprints2020-05-28info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/57410.1590/SciELOPreprints.574porhttps://preprints.scielo.org/index.php/scielo/article/view/574/810Copyright (c) 2020 Ivan Zimmermann, Mauro Sanchez, Jonas Brant, Domingos Alveshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessZimmermann, Ivan RicardoSanchez, MauroBrant, JonasAlves, Domingosreponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-05-26T18:02:08Zoai:ops.preprints.scielo.org:preprint/574Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-05-26T18:02:08SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Demand for ICU beds by COVID-19 in the Federal District, Brazil: an analysis of the impact of social distance measures with Monte Carlo simulations Demanda de camas de UCI por COVID-19 en el Distrito Federal, Brasil: un análisis del impacto de las medidas de distancia social con simulaciones de Monte Carlo Demanda por leitos de UTI pela COVID-19 no Distrito Federal, Brasil: uma análise do impacto das medidas de distanciamento social com simulações de Monte Carlo |
title |
Demand for ICU beds by COVID-19 in the Federal District, Brazil: an analysis of the impact of social distance measures with Monte Carlo simulations |
spellingShingle |
Demand for ICU beds by COVID-19 in the Federal District, Brazil: an analysis of the impact of social distance measures with Monte Carlo simulations Zimmermann, Ivan Ricardo COVID-19 Infecções por Coronavirus Previsões COVID-19 Coronavirus Infections Forecasting COVID-19 Infecciones por Coronavirus Predicción |
title_short |
Demand for ICU beds by COVID-19 in the Federal District, Brazil: an analysis of the impact of social distance measures with Monte Carlo simulations |
title_full |
Demand for ICU beds by COVID-19 in the Federal District, Brazil: an analysis of the impact of social distance measures with Monte Carlo simulations |
title_fullStr |
Demand for ICU beds by COVID-19 in the Federal District, Brazil: an analysis of the impact of social distance measures with Monte Carlo simulations |
title_full_unstemmed |
Demand for ICU beds by COVID-19 in the Federal District, Brazil: an analysis of the impact of social distance measures with Monte Carlo simulations |
title_sort |
Demand for ICU beds by COVID-19 in the Federal District, Brazil: an analysis of the impact of social distance measures with Monte Carlo simulations |
author |
Zimmermann, Ivan Ricardo |
author_facet |
Zimmermann, Ivan Ricardo Sanchez, Mauro Brant, Jonas Alves, Domingos |
author_role |
author |
author2 |
Sanchez, Mauro Brant, Jonas Alves, Domingos |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Zimmermann, Ivan Ricardo Sanchez, Mauro Brant, Jonas Alves, Domingos |
dc.subject.por.fl_str_mv |
COVID-19 Infecções por Coronavirus Previsões COVID-19 Coronavirus Infections Forecasting COVID-19 Infecciones por Coronavirus Predicción |
topic |
COVID-19 Infecções por Coronavirus Previsões COVID-19 Coronavirus Infections Forecasting COVID-19 Infecciones por Coronavirus Predicción |
description |
Objectives: to analyze the impact of social distance policies on the spread of COVID-19 and the need for beds in intensive care units. Methods: based on a dynamic transition compartmental model and Monte Carlo simulations, propagation scenarios were built according to the level of adherence of the social distance measures in the context of the Federal District, Brazil. The parameter values were based on official sources, indexed databases and public data repositories. Results: maintaining adherence to the 58% isolation level was the only favorable scenario, with a peak of up to 792 (IQR: 447 to 1,262) ICU admissions between 11/05/2020 and 1/15/2021. The absence of social distance would imply a peak of up to 7,331 (IQR: 5,427 to 9,696) ICU admissions. Conclusion: the projections corroborate the positive effect of social distance measures and the applicability of indicators in their monitoring. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-28 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/574 10.1590/SciELOPreprints.574 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/574 |
identifier_str_mv |
10.1590/SciELOPreprints.574 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/574/810 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Ivan Zimmermann, Mauro Sanchez, Jonas Brant, Domingos Alves https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Ivan Zimmermann, Mauro Sanchez, Jonas Brant, Domingos Alves https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047817922936832 |