Prediction of the COVID-19 trend for 2021 in northwestern Argentina
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | preprint |
Idioma: | spa |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/3346 |
Resumo: | Using a lagged polynomial regression model, which used COVID-19 data from 2020 with no vaccines, the prediction of COVID-19 was performed in a scenario with vaccine administration for Tucumán in 2021. The modeling included the identification of a contagion breaking point between both series with the best correlation. Previously, the lag that served to obtain the smallest error between the expected and observed values was indicated by means of cross correlation. The validation of the model was carried out with real data. In 21 days, 18,640 COVID-19 cases out of 20,400 reported cases were predicted. The maximum peak of COVID-19 was estimated 21 days in advance with the expected intensity. |
id |
SCI-1_796687fb199bff0075bc1acccca9af93 |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/3346 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Prediction of the COVID-19 trend for 2021 in northwestern ArgentinaCOVID-19 prediction of tendency for 2021 in northwestern ArgentinaPrevisão da tendência COVID-19 para 2021 no noroeste da ArgentinaPredicciónmodeloCOVID-19vacunasTucumánPredictionmodelCOVID-19vaccineTucumánUsing a lagged polynomial regression model, which used COVID-19 data from 2020 with no vaccines, the prediction of COVID-19 was performed in a scenario with vaccine administration for Tucumán in 2021. The modeling included the identification of a contagion breaking point between both series with the best correlation. Previously, the lag that served to obtain the smallest error between the expected and observed values was indicated by means of cross correlation. The validation of the model was carried out with real data. In 21 days, 18,640 COVID-19 cases out of 20,400 reported cases were predicted. The maximum peak of COVID-19 was estimated 21 days in advance with the expected intensity.Usando un modelo de regresión polinomial con retraso, que empleó datos de COVID-19 de 2020 con ausencia de vacunas, se realizó la predicción de COVID-19 en un escenario con administración de vacunas para Tucumán en 2021. La modelación incluyó la identificación de un punto de quiebre de contagios entre ambas series con la mejor correlación. Previamente, se indicó por medio de correlación cruzada el lag que sirvió para obtener el menor error entre los valores esperados y los observados. La validación del modelo fue realizada con datos reales. En 21 días fueron predichos 18.640 casos de COVID-19 de 20.400 casos informados. El pico máximo de COVID-19 fue estimado 21 días antes con la intensidad esperada.SciELO PreprintsSciELO PreprintsSciELO Preprints2021-12-15info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/334610.1590/1980-549720220001spahttps://preprints.scielo.org/index.php/scielo/article/view/3346/6089Copyright (c) 2021 Eduardo Agustín Mendoza, Octavio Bruzzone, María Julia Dantur Jurihttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMendoza, Eduardo AgustínBruzzone, OctavioJuri, María Julia Danturreponame:SciELO Preprintsinstname:SciELOinstacron:SCI2021-12-10T18:30:12Zoai:ops.preprints.scielo.org:preprint/3346Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2021-12-10T18:30:12SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Prediction of the COVID-19 trend for 2021 in northwestern Argentina COVID-19 prediction of tendency for 2021 in northwestern Argentina Previsão da tendência COVID-19 para 2021 no noroeste da Argentina |
title |
Prediction of the COVID-19 trend for 2021 in northwestern Argentina |
spellingShingle |
Prediction of the COVID-19 trend for 2021 in northwestern Argentina Mendoza, Eduardo Agustín Predicción modelo COVID-19 vacunas Tucumán Prediction model COVID-19 vaccine Tucumán |
title_short |
Prediction of the COVID-19 trend for 2021 in northwestern Argentina |
title_full |
Prediction of the COVID-19 trend for 2021 in northwestern Argentina |
title_fullStr |
Prediction of the COVID-19 trend for 2021 in northwestern Argentina |
title_full_unstemmed |
Prediction of the COVID-19 trend for 2021 in northwestern Argentina |
title_sort |
Prediction of the COVID-19 trend for 2021 in northwestern Argentina |
author |
Mendoza, Eduardo Agustín |
author_facet |
Mendoza, Eduardo Agustín Bruzzone, Octavio Juri, María Julia Dantur |
author_role |
author |
author2 |
Bruzzone, Octavio Juri, María Julia Dantur |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mendoza, Eduardo Agustín Bruzzone, Octavio Juri, María Julia Dantur |
dc.subject.por.fl_str_mv |
Predicción modelo COVID-19 vacunas Tucumán Prediction model COVID-19 vaccine Tucumán |
topic |
Predicción modelo COVID-19 vacunas Tucumán Prediction model COVID-19 vaccine Tucumán |
description |
Using a lagged polynomial regression model, which used COVID-19 data from 2020 with no vaccines, the prediction of COVID-19 was performed in a scenario with vaccine administration for Tucumán in 2021. The modeling included the identification of a contagion breaking point between both series with the best correlation. Previously, the lag that served to obtain the smallest error between the expected and observed values was indicated by means of cross correlation. The validation of the model was carried out with real data. In 21 days, 18,640 COVID-19 cases out of 20,400 reported cases were predicted. The maximum peak of COVID-19 was estimated 21 days in advance with the expected intensity. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-15 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/3346 10.1590/1980-549720220001 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/3346 |
identifier_str_mv |
10.1590/1980-549720220001 |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/3346/6089 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Eduardo Agustín Mendoza, Octavio Bruzzone, María Julia Dantur Juri https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Eduardo Agustín Mendoza, Octavio Bruzzone, María Julia Dantur Juri https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047825897357312 |