Prediction of the COVID-19 trend for 2021 in northwestern Argentina

Detalhes bibliográficos
Autor(a) principal: Mendoza, Eduardo Agustín
Data de Publicação: 2021
Outros Autores: Bruzzone, Octavio, Juri, María Julia Dantur
Tipo de documento: preprint
Idioma: spa
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/3346
Resumo: Using a lagged polynomial regression model, which used COVID-19 data from 2020 with no vaccines, the prediction of COVID-19 was performed in a scenario with vaccine administration for Tucumán in 2021. The modeling included the identification of a contagion breaking point between both series with the best correlation. Previously, the lag that served to obtain the smallest error between the expected and observed values was indicated by means of cross correlation. The validation of the model was carried out with real data. In 21 days, 18,640 COVID-19 cases out of 20,400 reported cases were predicted. The maximum peak of COVID-19 was estimated 21 days in advance with the expected intensity.
id SCI-1_796687fb199bff0075bc1acccca9af93
oai_identifier_str oai:ops.preprints.scielo.org:preprint/3346
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling Prediction of the COVID-19 trend for 2021 in northwestern ArgentinaCOVID-19 prediction of tendency for 2021 in northwestern ArgentinaPrevisão da tendência COVID-19 para 2021 no noroeste da ArgentinaPredicciónmodeloCOVID-19vacunasTucumánPredictionmodelCOVID-19vaccineTucumánUsing a lagged polynomial regression model, which used COVID-19 data from 2020 with no vaccines, the prediction of COVID-19 was performed in a scenario with vaccine administration for Tucumán in 2021. The modeling included the identification of a contagion breaking point between both series with the best correlation. Previously, the lag that served to obtain the smallest error between the expected and observed values was indicated by means of cross correlation. The validation of the model was carried out with real data. In 21 days, 18,640 COVID-19 cases out of 20,400 reported cases were predicted. The maximum peak of COVID-19 was estimated 21 days in advance with the expected intensity.Usando un modelo de regresión polinomial con retraso, que empleó datos de COVID-19 de 2020 con ausencia de vacunas, se realizó la predicción de COVID-19 en un escenario con administración de vacunas para Tucumán en 2021. La modelación incluyó la identificación de un punto de quiebre de contagios entre ambas series con la mejor correlación. Previamente, se indicó por medio de correlación cruzada el lag que sirvió para obtener el menor error entre los valores esperados y los observados. La validación del modelo fue realizada con datos reales. En 21 días fueron predichos 18.640 casos de COVID-19 de 20.400 casos informados. El pico máximo de COVID-19 fue estimado 21 días antes con la intensidad esperada.SciELO PreprintsSciELO PreprintsSciELO Preprints2021-12-15info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/334610.1590/1980-549720220001spahttps://preprints.scielo.org/index.php/scielo/article/view/3346/6089Copyright (c) 2021 Eduardo Agustín Mendoza, Octavio Bruzzone, María Julia Dantur Jurihttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMendoza, Eduardo AgustínBruzzone, OctavioJuri, María Julia Danturreponame:SciELO Preprintsinstname:SciELOinstacron:SCI2021-12-10T18:30:12Zoai:ops.preprints.scielo.org:preprint/3346Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2021-12-10T18:30:12SciELO Preprints - SciELOfalse
dc.title.none.fl_str_mv Prediction of the COVID-19 trend for 2021 in northwestern Argentina
COVID-19 prediction of tendency for 2021 in northwestern Argentina
Previsão da tendência COVID-19 para 2021 no noroeste da Argentina
title Prediction of the COVID-19 trend for 2021 in northwestern Argentina
spellingShingle Prediction of the COVID-19 trend for 2021 in northwestern Argentina
Mendoza, Eduardo Agustín
Predicción
modelo
COVID-19
vacunas
Tucumán
Prediction
model
COVID-19
vaccine
Tucumán
title_short Prediction of the COVID-19 trend for 2021 in northwestern Argentina
title_full Prediction of the COVID-19 trend for 2021 in northwestern Argentina
title_fullStr Prediction of the COVID-19 trend for 2021 in northwestern Argentina
title_full_unstemmed Prediction of the COVID-19 trend for 2021 in northwestern Argentina
title_sort Prediction of the COVID-19 trend for 2021 in northwestern Argentina
author Mendoza, Eduardo Agustín
author_facet Mendoza, Eduardo Agustín
Bruzzone, Octavio
Juri, María Julia Dantur
author_role author
author2 Bruzzone, Octavio
Juri, María Julia Dantur
author2_role author
author
dc.contributor.author.fl_str_mv Mendoza, Eduardo Agustín
Bruzzone, Octavio
Juri, María Julia Dantur
dc.subject.por.fl_str_mv Predicción
modelo
COVID-19
vacunas
Tucumán
Prediction
model
COVID-19
vaccine
Tucumán
topic Predicción
modelo
COVID-19
vacunas
Tucumán
Prediction
model
COVID-19
vaccine
Tucumán
description Using a lagged polynomial regression model, which used COVID-19 data from 2020 with no vaccines, the prediction of COVID-19 was performed in a scenario with vaccine administration for Tucumán in 2021. The modeling included the identification of a contagion breaking point between both series with the best correlation. Previously, the lag that served to obtain the smallest error between the expected and observed values was indicated by means of cross correlation. The validation of the model was carried out with real data. In 21 days, 18,640 COVID-19 cases out of 20,400 reported cases were predicted. The maximum peak of COVID-19 was estimated 21 days in advance with the expected intensity.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/3346
10.1590/1980-549720220001
url https://preprints.scielo.org/index.php/scielo/preprint/view/3346
identifier_str_mv 10.1590/1980-549720220001
dc.language.iso.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/article/view/3346/6089
dc.rights.driver.fl_str_mv Copyright (c) 2021 Eduardo Agustín Mendoza, Octavio Bruzzone, María Julia Dantur Juri
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Eduardo Agustín Mendoza, Octavio Bruzzone, María Julia Dantur Juri
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:SciELO
instacron:SCI
instname_str SciELO
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - SciELO
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1797047825897357312