Considerations on the Collatz Conjecture
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | preprint |
Idioma: | por |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/7664 |
Resumo: | Part of the scientific community has spent considerable time and resources to somehow validate Collatz's conjecture, countless efforts have achieved considerable progress in this direction, however this conjecture lacked definitive confirmation that choosing any odd number xi ∈ N∗, we will obtain x(i+1) = 3xi + 1, this being an even number x(i+1), divide it by the number two (successively) until another odd number ∈ N∗ is obtained, the process is repeated xn = 3x(n−1) + 1 and divisions by two until a number equal to 1 finally results.This work presents deductions, algorithms and equations that corroborate this proposition, supporting this perception and conclusion that Collatz's conjecture points to the final cycle 4 → 2 → 1. |
id |
SCI-1_8ebc026ba4070e15792baec0b9b2daa2 |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/7664 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Considerations on the Collatz ConjectureConsideraciones sobre la conjetura de CollatzConsiderações sabre a Conjectura de CollatzConjectura de CollatzDinâmica CaóticaCiclo LimiteOrbita periódicaPrincipio da indução matemáticaLinguagem Python e `R`Collatz conjectureChaotic DynamicsLimit CyclePeriodic orbitPrinciple of mathematical inductionPython and `R` languagePart of the scientific community has spent considerable time and resources to somehow validate Collatz's conjecture, countless efforts have achieved considerable progress in this direction, however this conjecture lacked definitive confirmation that choosing any odd number xi ∈ N∗, we will obtain x(i+1) = 3xi + 1, this being an even number x(i+1), divide it by the number two (successively) until another odd number ∈ N∗ is obtained, the process is repeated xn = 3x(n−1) + 1 and divisions by two until a number equal to 1 finally results.This work presents deductions, algorithms and equations that corroborate this proposition, supporting this perception and conclusion that Collatz's conjecture points to the final cycle 4 → 2 → 1.Parte de la comunidad científica ha dedicado un tiempo y recursos considerables a validar de alguna manera la conjetura de Collatz, innumerables esfuerzos han logrado avances considerables en esta dirección, sin embargo a esta conjetura le faltaba una confirmación definitiva de que eligiendo cualquier número impar xi ∈ N∗, obtendremos x(i+ 1) = 3xi + 1, siendo este un número par x(i+1), se divide por el número dos (sucesivamente) hasta obtener otro número impar ∈ N∗, se repite el proceso xn = 3x(n−1) + 1 y divisiones por dos hasta que finalmente resulte un número igual a 1.Este trabajo presenta deducciones, algoritmos y ecuaciones que corroboran esta proposición, apoyando esta percepción y conclusión de que la conjetura de Collatz apunta al ciclo final 4 → 2 → 1.Parte da comunidade cientifica tem dispendido considerável tempo e recursos para de alguma forma validar a conjectura de Collatz, inúmeros esforços tem logrado considerável avanço nesta direção, porém tal conjectura carecia de uma confirmação definitiva de que escolhido um número impar qualquer xi ∈ N∗, obteremos x(i+1) = 3xi + 1, sendo este um número x(i+1) par, divide-se o mesmo pelo número dois (sucessivamente) até obter-se outro número impar ∈ N∗ , repete-se o processo xn = 3x(n−1) + 1 e divisões por dois até que resulte finalmente um número igual 1.Neste trabalho apresentam-se deduções, algoritmos e equações que corroboram com tal proposição, embasam tal percepção e conclusão de que a conjectura de Collatz aponta para o ciclo final 4 → 2 → 1.SciELO PreprintsSciELO PreprintsSciELO Preprints2024-01-30info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/766410.1590/SciELOPreprints.7664porhttps://preprints.scielo.org/index.php/scielo/article/view/7664/14926Copyright (c) 2024 Audemir Lorishttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessLoris, Audemirreponame:SciELO Preprintsinstname:Scientific Electronic Library Online (SCIELO)instacron:SCI2023-12-08T14:04:35Zoai:ops.preprints.scielo.org:preprint/7664Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2023-12-08T14:04:35SciELO Preprints - Scientific Electronic Library Online (SCIELO)false |
dc.title.none.fl_str_mv |
Considerations on the Collatz Conjecture Consideraciones sobre la conjetura de Collatz Considerações sabre a Conjectura de Collatz |
title |
Considerations on the Collatz Conjecture |
spellingShingle |
Considerations on the Collatz Conjecture Loris, Audemir Conjectura de Collatz Dinâmica Caótica Ciclo Limite Orbita periódica Principio da indução matemática Linguagem Python e `R` Collatz conjecture Chaotic Dynamics Limit Cycle Periodic orbit Principle of mathematical induction Python and `R` language |
title_short |
Considerations on the Collatz Conjecture |
title_full |
Considerations on the Collatz Conjecture |
title_fullStr |
Considerations on the Collatz Conjecture |
title_full_unstemmed |
Considerations on the Collatz Conjecture |
title_sort |
Considerations on the Collatz Conjecture |
author |
Loris, Audemir |
author_facet |
Loris, Audemir |
author_role |
author |
dc.contributor.author.fl_str_mv |
Loris, Audemir |
dc.subject.por.fl_str_mv |
Conjectura de Collatz Dinâmica Caótica Ciclo Limite Orbita periódica Principio da indução matemática Linguagem Python e `R` Collatz conjecture Chaotic Dynamics Limit Cycle Periodic orbit Principle of mathematical induction Python and `R` language |
topic |
Conjectura de Collatz Dinâmica Caótica Ciclo Limite Orbita periódica Principio da indução matemática Linguagem Python e `R` Collatz conjecture Chaotic Dynamics Limit Cycle Periodic orbit Principle of mathematical induction Python and `R` language |
description |
Part of the scientific community has spent considerable time and resources to somehow validate Collatz's conjecture, countless efforts have achieved considerable progress in this direction, however this conjecture lacked definitive confirmation that choosing any odd number xi ∈ N∗, we will obtain x(i+1) = 3xi + 1, this being an even number x(i+1), divide it by the number two (successively) until another odd number ∈ N∗ is obtained, the process is repeated xn = 3x(n−1) + 1 and divisions by two until a number equal to 1 finally results.This work presents deductions, algorithms and equations that corroborate this proposition, supporting this perception and conclusion that Collatz's conjecture points to the final cycle 4 → 2 → 1. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01-30 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/7664 10.1590/SciELOPreprints.7664 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/7664 |
identifier_str_mv |
10.1590/SciELOPreprints.7664 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/7664/14926 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2024 Audemir Loris https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2024 Audemir Loris https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:Scientific Electronic Library Online (SCIELO) instacron:SCI |
instname_str |
Scientific Electronic Library Online (SCIELO) |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - Scientific Electronic Library Online (SCIELO) |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047814290669568 |