Vaccination against COVID-19 in Perú: Inequalities and associated factors.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | preprint |
Idioma: | spa |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/5372 |
Resumo: | Objective: to search for inequalities in vaccination with two doses, and its relationship with social and economic variables, cases and deaths. Methods: Exploratory ecological study of a secondary source from the Ministry of Health of Peru and the United Nations Program, from March 2020 to January 2022. Results: We found a high positive correlation (p < 0.05) with the Regional Competitiveness Index (r = 0.72), and the State Density Index (r = 0.81); moderate with the Human Development Index, doctors per 1,000 inhabitants, cases and deaths per 100 000. In the three waves of the pandemic, the most affected were older adults; the third wave was higher. Mortality decreased during vaccination compared to before it; there was inequality with two doses between the regions. The Lorenz curve expressed inequality with the number of doses (GINI: One dose: 0,05, Two doses: 0,06, Three doses: 0,18). The concentration curve was similar to that of Lorenz through the Regional Competitiveness Index, with higher doses, inequality increased (One dose: 0,05, two doses: 0,06, three doses: 0,16); The same happened with the State Density Index (One dose: 0,05, two doses: 0.06, three doses: 0,17). Conclusion: Inequality in vaccination between regions was found, associated with socioeconomic factors in Peru. |
id |
SCI-1_99b9bf07bc55a1c50a2552ad0e572492 |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/5372 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Vaccination against COVID-19 in Perú: Inequalities and associated factors.LA VACUNACIÓN CONTRA COVID-19 EN EL PERÚ: Desigualdades y factores asociados.COVID-19mass vaccinationsocioeconomics factorshealthcare disparitiespandemicsCOVID-19vacunación masivafactores socioeconómicosdisparidades en atención en saludObjective: to search for inequalities in vaccination with two doses, and its relationship with social and economic variables, cases and deaths. Methods: Exploratory ecological study of a secondary source from the Ministry of Health of Peru and the United Nations Program, from March 2020 to January 2022. Results: We found a high positive correlation (p < 0.05) with the Regional Competitiveness Index (r = 0.72), and the State Density Index (r = 0.81); moderate with the Human Development Index, doctors per 1,000 inhabitants, cases and deaths per 100 000. In the three waves of the pandemic, the most affected were older adults; the third wave was higher. Mortality decreased during vaccination compared to before it; there was inequality with two doses between the regions. The Lorenz curve expressed inequality with the number of doses (GINI: One dose: 0,05, Two doses: 0,06, Three doses: 0,18). The concentration curve was similar to that of Lorenz through the Regional Competitiveness Index, with higher doses, inequality increased (One dose: 0,05, two doses: 0,06, three doses: 0,16); The same happened with the State Density Index (One dose: 0,05, two doses: 0.06, three doses: 0,17). Conclusion: Inequality in vaccination between regions was found, associated with socioeconomic factors in Peru.Objetivo: buscar desigualdades en la vacunación con dos dosis, y su relación con variables sociales, económicas, casos y fallecidos. Métodos: Estudio ecológico exploratorio de fuente secundaria del Ministerio de Salud de Perú y Programa de las Naciones Unidas, de marzo 2020 a enero 2022. Resultados: Encontramos correlación positiva alta (p < 0,05) con el Índice de Competitividad Regional (r = 0,72), y el Índice de Densidad del Estado (r = 0,81); moderada con el Índice de Desarrollo Humano, médicos por 1000 habitantes, casos y fallecidos por 100 000. En las tres olas de pandemia, los más afectados fueron adultos mayores; fue más alta la tercera ola. La mortalidad disminuyó durante la vacunación en comparación con antes de ella; existió desigualdad con dos dosis entre las regiones. La curva de Lorenz expresó desigualdad con el número de dosis (GINI: Una dosis: 0,05, Dos dosis: 0,06, Tres dosis: 0,18). La curva de concentración presentó semejanza con la de Lorenz mediante el Índice de Competitividad Regional, a mayor dosis se incrementó la desigualdad (Una dosis: 0,05, dos dosis: 0,06, tres dosis: 0,16); igual sucedió con el Índice de Densidad del Estado (Una dosis: 0,05, dos dosis: 0,06, tres dosis: 0,17). Conclusión: Se encontró desigualdad en la vacunación entre las regiones, asociada con factores socioeconómicos en Perú.SciELO PreprintsSciELO PreprintsSciELO Preprints2023-01-06info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/537210.1590/SciELOPreprints.5372spahttps://preprints.scielo.org/index.php/scielo/article/view/5372/10380Copyright (c) 2023 Ubaldo Miranda-Soberón, Jeny del Rio-Mendoza, Isabel Pino-Arana, María Carhuancho-Arango, Luciana Beteta-Cabrerahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMiranda-Soberón, UbaldoRio-Mendoza, Jeny delPino-Arana, IsabelCarhuancho-Arango, MaríaBeteta-Cabrera, Lucianareponame:SciELO Preprintsinstname:SciELOinstacron:SCI2023-01-04T05:16:08Zoai:ops.preprints.scielo.org:preprint/5372Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2023-01-04T05:16:08SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Vaccination against COVID-19 in Perú: Inequalities and associated factors. LA VACUNACIÓN CONTRA COVID-19 EN EL PERÚ: Desigualdades y factores asociados. |
title |
Vaccination against COVID-19 in Perú: Inequalities and associated factors. |
spellingShingle |
Vaccination against COVID-19 in Perú: Inequalities and associated factors. Miranda-Soberón, Ubaldo COVID-19 mass vaccination socioeconomics factors healthcare disparities pandemics COVID-19 vacunación masiva factores socioeconómicos disparidades en atención en salud |
title_short |
Vaccination against COVID-19 in Perú: Inequalities and associated factors. |
title_full |
Vaccination against COVID-19 in Perú: Inequalities and associated factors. |
title_fullStr |
Vaccination against COVID-19 in Perú: Inequalities and associated factors. |
title_full_unstemmed |
Vaccination against COVID-19 in Perú: Inequalities and associated factors. |
title_sort |
Vaccination against COVID-19 in Perú: Inequalities and associated factors. |
author |
Miranda-Soberón, Ubaldo |
author_facet |
Miranda-Soberón, Ubaldo Rio-Mendoza, Jeny del Pino-Arana, Isabel Carhuancho-Arango, María Beteta-Cabrera, Luciana |
author_role |
author |
author2 |
Rio-Mendoza, Jeny del Pino-Arana, Isabel Carhuancho-Arango, María Beteta-Cabrera, Luciana |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Miranda-Soberón, Ubaldo Rio-Mendoza, Jeny del Pino-Arana, Isabel Carhuancho-Arango, María Beteta-Cabrera, Luciana |
dc.subject.por.fl_str_mv |
COVID-19 mass vaccination socioeconomics factors healthcare disparities pandemics COVID-19 vacunación masiva factores socioeconómicos disparidades en atención en salud |
topic |
COVID-19 mass vaccination socioeconomics factors healthcare disparities pandemics COVID-19 vacunación masiva factores socioeconómicos disparidades en atención en salud |
description |
Objective: to search for inequalities in vaccination with two doses, and its relationship with social and economic variables, cases and deaths. Methods: Exploratory ecological study of a secondary source from the Ministry of Health of Peru and the United Nations Program, from March 2020 to January 2022. Results: We found a high positive correlation (p < 0.05) with the Regional Competitiveness Index (r = 0.72), and the State Density Index (r = 0.81); moderate with the Human Development Index, doctors per 1,000 inhabitants, cases and deaths per 100 000. In the three waves of the pandemic, the most affected were older adults; the third wave was higher. Mortality decreased during vaccination compared to before it; there was inequality with two doses between the regions. The Lorenz curve expressed inequality with the number of doses (GINI: One dose: 0,05, Two doses: 0,06, Three doses: 0,18). The concentration curve was similar to that of Lorenz through the Regional Competitiveness Index, with higher doses, inequality increased (One dose: 0,05, two doses: 0,06, three doses: 0,16); The same happened with the State Density Index (One dose: 0,05, two doses: 0.06, three doses: 0,17). Conclusion: Inequality in vaccination between regions was found, associated with socioeconomic factors in Peru. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-06 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/5372 10.1590/SciELOPreprints.5372 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/5372 |
identifier_str_mv |
10.1590/SciELOPreprints.5372 |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/5372/10380 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047831037476864 |