Drinking Water Quality Surveillance Information System (Sisagua): evaluation of data completeness on water supply coverage, Brazil, 2014-2020

Detalhes bibliográficos
Autor(a) principal: Mata, Renan Neves da
Data de Publicação: 2022
Outros Autores: Oliveira Júnior, Aristeu de, Ramalho, Walter Massa
Tipo de documento: preprint
Idioma: por
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/4460
Resumo: Objective: to evaluate the completeness of the dataset of the Information System for the Surveillance of the Quality of Water for Human Consumption (Sisagua) regarding the information on the coverage of water supply for human consumption in Brazil. Methods: Descriptive study referring to data from 2014 to 2020. Relative frequency distribution of 35 variables were calculated. Completeness was measured as excellent (≥95%), good (90% to 94%), fair (70% to 89%), poor (50% to 69%) and very poor (≤49%). Results: In the period, there were 861,250 records of forms of supply. Sisagua, regarding the completeness of the data, obtained an excellent classification for 25 variables, good for two, bad for four and very bad for four other variables. Conclusion: The system presented in most of the variables an excellent completeness of the data. Studies of this nature contribute to the continuous improvement of Sisagua and make it possible to identify inconsistencies and weaknesses.
id SCI-1_b103256dad3a7f06e2da5898bd614fd3
oai_identifier_str oai:ops.preprints.scielo.org:preprint/4460
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling Drinking Water Quality Surveillance Information System (Sisagua): evaluation of data completeness on water supply coverage, Brazil, 2014-2020Sistema de Información de Vigilancia de la Calidad del Agua para Consumo Humano (Sisagua): evaluación de la finalización de dos datos de cobertura de abastecimiento de agua, Brasil, 2014-2020Sistema de Informação de Vigilância da Qualidade da Água para Consumo Humano – Sisagua –: avaliação da completitude dos dados sobre cobertura de abastecimento, Brasil, 2014-2020Água PotávelSistemas de Informação em SaúdeVigilância em Saúde PúblicaSaúde AmbientalEpidemiologia DescritivaDrinking WaterHealth Information SystemsPublic Health SurveillanceEnvironmental HealthEpidemiology, Descriptive.Agua PotableSistemas de Información en SaludVigilancia en Salud PúblicaSalud AmbientalEpidemiología DescriptivaObjective: to evaluate the completeness of the dataset of the Information System for the Surveillance of the Quality of Water for Human Consumption (Sisagua) regarding the information on the coverage of water supply for human consumption in Brazil. Methods: Descriptive study referring to data from 2014 to 2020. Relative frequency distribution of 35 variables were calculated. Completeness was measured as excellent (≥95%), good (90% to 94%), fair (70% to 89%), poor (50% to 69%) and very poor (≤49%). Results: In the period, there were 861,250 records of forms of supply. Sisagua, regarding the completeness of the data, obtained an excellent classification for 25 variables, good for two, bad for four and very bad for four other variables. Conclusion: The system presented in most of the variables an excellent completeness of the data. Studies of this nature contribute to the continuous improvement of Sisagua and make it possible to identify inconsistencies and weaknesses.Objetivo: evaluar la completitud del conjunto de datos del Sistema de Información para la Vigilancia de la Calidad del Agua para Consumo Humano (Sisagua) en cuanto a la información sobre la cobertura de abastecimiento de agua para consumo humano en Brasil. Métodos: Estudio descriptivo referido a datos de 2014 a 2020. Se calcularon distribuciones de frecuencias relativas de 35 variables. La completitud se midió como excelente (≥95%), buena (90% a 94%), regular (70% a 89%), mala (50% a 69%) y muy mala (≤49%). Resultados: En el período, hubo 861.250 registros de formas de suministro. Sisagua, en cuanto a la completitud de los datos, obtuvo una clasificación excelente para 25 variables, buena para dos, mala para cuatro y muy mala para otras cuatro variables. Conclusión: El sistema presentó en la mayoría de las variables una excelente completitud de los datos. Estudios de esta naturaleza contribuyen a la mejora continua de Sisagua y permiten identificar inconsistencias y debilidades.Objetivo: avaliar a completitude do conjunto de dados do Sistema de Informação de Vigilância da Qualidade da Água para Consumo Humano (Sisagua) referente às informações sobre a cobertura de abastecimento de água para consumo humano no Brasil. Métodos: Estudo descritivo, sobre dados de 2014 a 2020. Foi calculada distribuição de frequência relativa de 35 variáveis. A completitude foi mensurada como excelente (≥95%), boa (90 a 94%), regular (70 a 89%), ruim (50 a 69%) e muito ruim (≤49%). Resultados: No período, foram 861.250 registros de formas de abastecimento. O Sisagua, quanto à completitude dos dados, obteve uma classificação excelente para 25 variáveis, boa para duas, ruim para quatro e muito ruim para outras quatro. Conclusão: O sistema apresentou, em grande parte das variáveis, excelente completitude dos dados. Estudos dessa natureza contribuem para o aperfeiçoamento contínuo do Sisagua e possibilitam a identificação de inconsistências e fragilidades.SciELO PreprintsSciELO PreprintsSciELO Preprints2022-07-19info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/446010.1590/S2237-96222022000300003porhttps://preprints.scielo.org/index.php/scielo/article/view/4460/8518Copyright (c) 2022 Renan Neves da Mata, Aristeu de Oliveira Júnior, Walter Massa Ramalhohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMata, Renan Neves daOliveira Júnior, Aristeu de Ramalho, Walter Massareponame:SciELO Preprintsinstname:SciELOinstacron:SCI2022-07-19T11:54:36Zoai:ops.preprints.scielo.org:preprint/4460Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2022-07-19T11:54:36SciELO Preprints - SciELOfalse
dc.title.none.fl_str_mv Drinking Water Quality Surveillance Information System (Sisagua): evaluation of data completeness on water supply coverage, Brazil, 2014-2020
Sistema de Información de Vigilancia de la Calidad del Agua para Consumo Humano (Sisagua): evaluación de la finalización de dos datos de cobertura de abastecimiento de agua, Brasil, 2014-2020
Sistema de Informação de Vigilância da Qualidade da Água para Consumo Humano – Sisagua –: avaliação da completitude dos dados sobre cobertura de abastecimento, Brasil, 2014-2020
title Drinking Water Quality Surveillance Information System (Sisagua): evaluation of data completeness on water supply coverage, Brazil, 2014-2020
spellingShingle Drinking Water Quality Surveillance Information System (Sisagua): evaluation of data completeness on water supply coverage, Brazil, 2014-2020
Mata, Renan Neves da
Água Potável
Sistemas de Informação em Saúde
Vigilância em Saúde Pública
Saúde Ambiental
Epidemiologia Descritiva
Drinking Water
Health Information Systems
Public Health Surveillance
Environmental Health
Epidemiology, Descriptive.
Agua Potable
Sistemas de Información en Salud
Vigilancia en Salud Pública
Salud Ambiental
Epidemiología Descriptiva
title_short Drinking Water Quality Surveillance Information System (Sisagua): evaluation of data completeness on water supply coverage, Brazil, 2014-2020
title_full Drinking Water Quality Surveillance Information System (Sisagua): evaluation of data completeness on water supply coverage, Brazil, 2014-2020
title_fullStr Drinking Water Quality Surveillance Information System (Sisagua): evaluation of data completeness on water supply coverage, Brazil, 2014-2020
title_full_unstemmed Drinking Water Quality Surveillance Information System (Sisagua): evaluation of data completeness on water supply coverage, Brazil, 2014-2020
title_sort Drinking Water Quality Surveillance Information System (Sisagua): evaluation of data completeness on water supply coverage, Brazil, 2014-2020
author Mata, Renan Neves da
author_facet Mata, Renan Neves da
Oliveira Júnior, Aristeu de
Ramalho, Walter Massa
author_role author
author2 Oliveira Júnior, Aristeu de
Ramalho, Walter Massa
author2_role author
author
dc.contributor.author.fl_str_mv Mata, Renan Neves da
Oliveira Júnior, Aristeu de
Ramalho, Walter Massa
dc.subject.por.fl_str_mv Água Potável
Sistemas de Informação em Saúde
Vigilância em Saúde Pública
Saúde Ambiental
Epidemiologia Descritiva
Drinking Water
Health Information Systems
Public Health Surveillance
Environmental Health
Epidemiology, Descriptive.
Agua Potable
Sistemas de Información en Salud
Vigilancia en Salud Pública
Salud Ambiental
Epidemiología Descriptiva
topic Água Potável
Sistemas de Informação em Saúde
Vigilância em Saúde Pública
Saúde Ambiental
Epidemiologia Descritiva
Drinking Water
Health Information Systems
Public Health Surveillance
Environmental Health
Epidemiology, Descriptive.
Agua Potable
Sistemas de Información en Salud
Vigilancia en Salud Pública
Salud Ambiental
Epidemiología Descriptiva
description Objective: to evaluate the completeness of the dataset of the Information System for the Surveillance of the Quality of Water for Human Consumption (Sisagua) regarding the information on the coverage of water supply for human consumption in Brazil. Methods: Descriptive study referring to data from 2014 to 2020. Relative frequency distribution of 35 variables were calculated. Completeness was measured as excellent (≥95%), good (90% to 94%), fair (70% to 89%), poor (50% to 69%) and very poor (≤49%). Results: In the period, there were 861,250 records of forms of supply. Sisagua, regarding the completeness of the data, obtained an excellent classification for 25 variables, good for two, bad for four and very bad for four other variables. Conclusion: The system presented in most of the variables an excellent completeness of the data. Studies of this nature contribute to the continuous improvement of Sisagua and make it possible to identify inconsistencies and weaknesses.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-19
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/4460
10.1590/S2237-96222022000300003
url https://preprints.scielo.org/index.php/scielo/preprint/view/4460
identifier_str_mv 10.1590/S2237-96222022000300003
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/article/view/4460/8518
dc.rights.driver.fl_str_mv Copyright (c) 2022 Renan Neves da Mata, Aristeu de Oliveira Júnior, Walter Massa Ramalho
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Renan Neves da Mata, Aristeu de Oliveira Júnior, Walter Massa Ramalho
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:SciELO
instacron:SCI
instname_str SciELO
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - SciELO
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1797047829182545920