Automatic determination of the color of the Mexican semaphore of COVID-19 from the news
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | preprint |
Idioma: | spa |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/3834 |
Resumo: | This paper presents the analysis of textual classification models to automatically determine the Mexican regional epidemiological traffic light through COVID news. A database was collected with 4,270 news items referring to COVID, from June 1, 2020, to March 28, 2021. The label of each news item is the color of the epidemiological traffic light that the Mexican government cataloged in the week of publication of the news Classifiers such as SVM, KNN, Random Forest, and Deep Learning were applied. The results show that it is possible to take advantage of the information published in the news to determine the color of the traffic light up to 4 weeks in advance, obtaining results of up to 0.74 F-measure, which is a competitive result taking into account the imbalance of classes of this task. |
id |
SCI-1_b20d1cb3d8b74569da430ce7ead2f9a7 |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/3834 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Automatic determination of the color of the Mexican semaphore of COVID-19 from the newsDeterminación automática del color del semáforo Mexicano del COVID-19 a partir de las noticiasCOVID-19natural language processingtextual classificationepidemiological semaphoreCOVID-19procesamiento de lenguaje naturalclasificación textualsemáforo epidemiológicoThis paper presents the analysis of textual classification models to automatically determine the Mexican regional epidemiological traffic light through COVID news. A database was collected with 4,270 news items referring to COVID, from June 1, 2020, to March 28, 2021. The label of each news item is the color of the epidemiological traffic light that the Mexican government cataloged in the week of publication of the news Classifiers such as SVM, KNN, Random Forest, and Deep Learning were applied. The results show that it is possible to take advantage of the information published in the news to determine the color of the traffic light up to 4 weeks in advance, obtaining results of up to 0.74 F-measure, which is a competitive result taking into account the imbalance of classes of this task.Este trabajo presenta el análisis de modelos de clasificación textual para determinar automáticamente el semáforo epidemiológico regional mexicano a través de noticias de COVID. Se recolectó una base de datos con 4270 noticias referente a COVID, desde el 1 de junio de 2020 hasta el 28 de marzo de 2021. La etiqueta de cada noticia es el color del semáforo epidemiológico que el gobierno mexicano catalogó en la semana de la publicación de la noticia. Se aplicaron clasificadores como: SVM, KNN, Random Forest y Deep Learning. Los resultados muestran que es posible aprovechar la información que se publica en las noticias para determinar el color del semáforo hasta con 4 semanas de anticipación obteniendo resultados de hasta 0.74 de F-measure, el cual es un resultado competitivo tomando en cuenta el desbalance de clases de esta tarea.SciELO PreprintsSciELO PreprintsSciELO Preprints2022-03-25info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/383410.1590/SciELOPreprints.3834spahttps://preprints.scielo.org/index.php/scielo/article/view/3834/7162Copyright (c) 2022 Miguel Ángel Alvarez-Carmona, Ramón Arandahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAlvarez-Carmona, Miguel ÁngelAranda, Ramónreponame:SciELO Preprintsinstname:SciELOinstacron:SCI2022-03-23T07:20:04Zoai:ops.preprints.scielo.org:preprint/3834Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2022-03-23T07:20:04SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Automatic determination of the color of the Mexican semaphore of COVID-19 from the news Determinación automática del color del semáforo Mexicano del COVID-19 a partir de las noticias |
title |
Automatic determination of the color of the Mexican semaphore of COVID-19 from the news |
spellingShingle |
Automatic determination of the color of the Mexican semaphore of COVID-19 from the news Alvarez-Carmona, Miguel Ángel COVID-19 natural language processing textual classification epidemiological semaphore COVID-19 procesamiento de lenguaje natural clasificación textual semáforo epidemiológico |
title_short |
Automatic determination of the color of the Mexican semaphore of COVID-19 from the news |
title_full |
Automatic determination of the color of the Mexican semaphore of COVID-19 from the news |
title_fullStr |
Automatic determination of the color of the Mexican semaphore of COVID-19 from the news |
title_full_unstemmed |
Automatic determination of the color of the Mexican semaphore of COVID-19 from the news |
title_sort |
Automatic determination of the color of the Mexican semaphore of COVID-19 from the news |
author |
Alvarez-Carmona, Miguel Ángel |
author_facet |
Alvarez-Carmona, Miguel Ángel Aranda, Ramón |
author_role |
author |
author2 |
Aranda, Ramón |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Alvarez-Carmona, Miguel Ángel Aranda, Ramón |
dc.subject.por.fl_str_mv |
COVID-19 natural language processing textual classification epidemiological semaphore COVID-19 procesamiento de lenguaje natural clasificación textual semáforo epidemiológico |
topic |
COVID-19 natural language processing textual classification epidemiological semaphore COVID-19 procesamiento de lenguaje natural clasificación textual semáforo epidemiológico |
description |
This paper presents the analysis of textual classification models to automatically determine the Mexican regional epidemiological traffic light through COVID news. A database was collected with 4,270 news items referring to COVID, from June 1, 2020, to March 28, 2021. The label of each news item is the color of the epidemiological traffic light that the Mexican government cataloged in the week of publication of the news Classifiers such as SVM, KNN, Random Forest, and Deep Learning were applied. The results show that it is possible to take advantage of the information published in the news to determine the color of the traffic light up to 4 weeks in advance, obtaining results of up to 0.74 F-measure, which is a competitive result taking into account the imbalance of classes of this task. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-25 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/3834 10.1590/SciELOPreprints.3834 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/3834 |
identifier_str_mv |
10.1590/SciELOPreprints.3834 |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/3834/7162 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Miguel Ángel Alvarez-Carmona, Ramón Aranda https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Miguel Ángel Alvarez-Carmona, Ramón Aranda https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047827892797440 |