Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | preprint |
Idioma: | spa |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/1076 |
Resumo: | In the Chinese city of Wuhan at the end of 2019, a new respiratory disease known as COVID-19 emerged, caused by the SARS-CoV-2 virus. This disease spreads rapidly worldwide and presents numerous infections and deaths; therefore, the World Health Organization upgraded its category from epidemic to pandemic because of alarming levels of spread, severity, and inaction. Given this situation, different areas of science have approached the study of this disease, among them is mathematical epidemiology through the modeling of the phenomenon; therefore, in this document, we performed a systematic review related to transmission models of COVID-19, specifically discrete models because of the daily report of infection cases around the world. We identified different important disease features implemented in the models, e.g., metapopulations, migration, quarantine, inclusion of latency, and incubation periods, among others. Also, we identified its basic structure, and we found that many papers directly used SIR and SEIR models with no modification, being an excessive simplification of the COVID-19 transmission phenomenon. Likewise, some authors highlighted an important problem during the application of mathematical models: the quality or absence of the daily case data in some affected countries. Finally, the mathematical models should be constantly updated together with the publication of research related to virology and epidemiology of the disease. |
id |
SCI-1_be03520afdba94c7973edb209e4d1bf8 |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/1076 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic reviewModelos discretos de transmisión de COVID-19 y publicaciones preeliminares en la ciencia: una búsqueda sistematizadaDiscrete modelscontrolforecastCovid-19modelos discretoscontrolpronósticoIn the Chinese city of Wuhan at the end of 2019, a new respiratory disease known as COVID-19 emerged, caused by the SARS-CoV-2 virus. This disease spreads rapidly worldwide and presents numerous infections and deaths; therefore, the World Health Organization upgraded its category from epidemic to pandemic because of alarming levels of spread, severity, and inaction. Given this situation, different areas of science have approached the study of this disease, among them is mathematical epidemiology through the modeling of the phenomenon; therefore, in this document, we performed a systematic review related to transmission models of COVID-19, specifically discrete models because of the daily report of infection cases around the world. We identified different important disease features implemented in the models, e.g., metapopulations, migration, quarantine, inclusion of latency, and incubation periods, among others. Also, we identified its basic structure, and we found that many papers directly used SIR and SEIR models with no modification, being an excessive simplification of the COVID-19 transmission phenomenon. Likewise, some authors highlighted an important problem during the application of mathematical models: the quality or absence of the daily case data in some affected countries. Finally, the mathematical models should be constantly updated together with the publication of research related to virology and epidemiology of the disease.A finales del año 2019, en la ciudad china de Wuhan, emergió una nueva enfermedad respiratoria conocida como COVID-19 que es producida por el virus SARS-CoV-2, similar al virus causante del síndrome respiratorio agudo grave (SARS-CoV). Actualmente, esta enfermedad se esparció rápidamente a nivel mundial y ha presentado una gran cantidad de afectados en diferentes regiones del mundo; por lo tanto, la Organización Mundial de la Salud elevó su categoría de epidemia a pandemia debido a los niveles alarmantes de propagación, gravedad e inacción. Dada esta situación, diferentes áreas de la ciencia han abordado su estudio, entre ellas esta la epidemiología matemática a través del modelado del fenómeno; por lo tanto en el presente documento se realizó una revisión sistematizada de literatura relacionada a modelos de transmisión del COVID-19, específicamente modelos discretos debido a la naturaleza de reporte diaria de casos de la enfermedad en diferentes localidades del mundo. Se lograron identificar diferentes características importantes de la enfermedad que son implementadas en los modelos matemáticos: división por grupos etarios, metapoblaciones, migración, cuarentena, inclusión de periodos de latencia e incubación, entre otros. Aun así, se encontró una gran cantidad de artículos que utilizaban directamente modelos SIR y SEIR sin ningún tipo de modificación, haciendo una simplificación desmedida del fenómeno de transmisión del COVID-19. Asimismo, se identificaron algunas problemáticas a la hora de implementar los modelos matemáticos: la presencia y calidad de los datos de casos diarios en algunos países afectados. Finalmente, se sugiere que los modelos matemáticos estén en constante actualización junto a la publicación de las investigaciones relacionadas con virología y epidemiología de la enfermedad.SciELO PreprintsSciELO PreprintsSciELO Preprints2020-08-10info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/107610.1590/SciELOPreprints.1076spahttps://preprints.scielo.org/index.php/scielo/article/view/1076/1556Copyright (c) 2020 Alexandra Catano-Lopez, Daniel Rojas-Diazhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessCatano-Lopez, AlexandraRojas-Diaz, Danielreponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-08-07T17:50:43Zoai:ops.preprints.scielo.org:preprint/1076Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-08-07T17:50:43SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review Modelos discretos de transmisión de COVID-19 y publicaciones preeliminares en la ciencia: una búsqueda sistematizada |
title |
Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review |
spellingShingle |
Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review Catano-Lopez, Alexandra Discrete models control forecast Covid-19 modelos discretos control pronóstico |
title_short |
Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review |
title_full |
Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review |
title_fullStr |
Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review |
title_full_unstemmed |
Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review |
title_sort |
Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review |
author |
Catano-Lopez, Alexandra |
author_facet |
Catano-Lopez, Alexandra Rojas-Diaz, Daniel |
author_role |
author |
author2 |
Rojas-Diaz, Daniel |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Catano-Lopez, Alexandra Rojas-Diaz, Daniel |
dc.subject.por.fl_str_mv |
Discrete models control forecast Covid-19 modelos discretos control pronóstico |
topic |
Discrete models control forecast Covid-19 modelos discretos control pronóstico |
description |
In the Chinese city of Wuhan at the end of 2019, a new respiratory disease known as COVID-19 emerged, caused by the SARS-CoV-2 virus. This disease spreads rapidly worldwide and presents numerous infections and deaths; therefore, the World Health Organization upgraded its category from epidemic to pandemic because of alarming levels of spread, severity, and inaction. Given this situation, different areas of science have approached the study of this disease, among them is mathematical epidemiology through the modeling of the phenomenon; therefore, in this document, we performed a systematic review related to transmission models of COVID-19, specifically discrete models because of the daily report of infection cases around the world. We identified different important disease features implemented in the models, e.g., metapopulations, migration, quarantine, inclusion of latency, and incubation periods, among others. Also, we identified its basic structure, and we found that many papers directly used SIR and SEIR models with no modification, being an excessive simplification of the COVID-19 transmission phenomenon. Likewise, some authors highlighted an important problem during the application of mathematical models: the quality or absence of the daily case data in some affected countries. Finally, the mathematical models should be constantly updated together with the publication of research related to virology and epidemiology of the disease. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-10 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/1076 10.1590/SciELOPreprints.1076 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/1076 |
identifier_str_mv |
10.1590/SciELOPreprints.1076 |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/1076/1556 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Alexandra Catano-Lopez, Daniel Rojas-Diaz https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Alexandra Catano-Lopez, Daniel Rojas-Diaz https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047819536695296 |