Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review

Detalhes bibliográficos
Autor(a) principal: Catano-Lopez, Alexandra
Data de Publicação: 2020
Outros Autores: Rojas-Diaz, Daniel
Tipo de documento: preprint
Idioma: spa
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/1076
Resumo: In the Chinese city of Wuhan at the end of 2019, a new respiratory disease known as COVID-19 emerged, caused by the SARS-CoV-2 virus. This disease spreads rapidly worldwide and presents numerous infections and deaths; therefore, the World Health Organization upgraded its category from epidemic to pandemic because of alarming levels of spread, severity, and inaction. Given this situation, different areas of science have approached the study of this disease, among them is mathematical epidemiology through the modeling of the phenomenon; therefore, in this document, we performed a systematic review related to transmission models of COVID-19, specifically discrete models because of the daily report of infection cases around the world. We identified different important disease features implemented in the models, e.g., metapopulations, migration, quarantine, inclusion of latency, and incubation periods, among others. Also, we identified its basic structure, and we found that many papers directly used SIR and SEIR models with no modification, being an excessive simplification of the COVID-19 transmission phenomenon. Likewise, some authors highlighted an important problem during the application of mathematical models: the quality or absence of the daily case data in some affected countries. Finally, the mathematical models should be constantly updated together with the publication of research related to virology and epidemiology of the disease.
id SCI-1_be03520afdba94c7973edb209e4d1bf8
oai_identifier_str oai:ops.preprints.scielo.org:preprint/1076
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic reviewModelos discretos de transmisión de COVID-19 y publicaciones preeliminares en la ciencia: una búsqueda sistematizadaDiscrete modelscontrolforecastCovid-19modelos discretoscontrolpronósticoIn the Chinese city of Wuhan at the end of 2019, a new respiratory disease known as COVID-19 emerged, caused by the SARS-CoV-2 virus. This disease spreads rapidly worldwide and presents numerous infections and deaths; therefore, the World Health Organization upgraded its category from epidemic to pandemic because of alarming levels of spread, severity, and inaction. Given this situation, different areas of science have approached the study of this disease, among them is mathematical epidemiology through the modeling of the phenomenon; therefore, in this document, we performed a systematic review related to transmission models of COVID-19, specifically discrete models because of the daily report of infection cases around the world. We identified different important disease features implemented in the models, e.g., metapopulations, migration, quarantine, inclusion of latency, and incubation periods, among others. Also, we identified its basic structure, and we found that many papers directly used SIR and SEIR models with no modification, being an excessive simplification of the COVID-19 transmission phenomenon. Likewise, some authors highlighted an important problem during the application of mathematical models: the quality or absence of the daily case data in some affected countries. Finally, the mathematical models should be constantly updated together with the publication of research related to virology and epidemiology of the disease.A finales del año 2019, en la ciudad china de Wuhan, emergió una nueva enfermedad respiratoria conocida como COVID-19 que es producida por el virus SARS-CoV-2, similar al virus causante del síndrome respiratorio agudo grave (SARS-CoV). Actualmente, esta enfermedad se esparció rápidamente a nivel mundial y ha presentado una gran cantidad de afectados en diferentes regiones del mundo; por lo tanto, la Organización Mundial de la Salud elevó su categoría de epidemia a pandemia debido a los niveles alarmantes de propagación, gravedad e inacción. Dada esta situación, diferentes áreas de la ciencia han abordado su estudio, entre ellas esta la epidemiología matemática a través del modelado del fenómeno; por lo tanto en el presente documento se realizó una revisión sistematizada de literatura relacionada a modelos de transmisión del COVID-19, específicamente modelos discretos debido a la naturaleza de reporte diaria de casos de la enfermedad en diferentes localidades del mundo. Se lograron identificar diferentes características importantes de la enfermedad que son implementadas en los modelos matemáticos: división por grupos etarios, metapoblaciones, migración, cuarentena, inclusión de periodos de latencia e incubación, entre otros. Aun así, se encontró una gran cantidad de artículos que utilizaban directamente modelos SIR y SEIR sin ningún tipo de modificación, haciendo una simplificación desmedida del fenómeno de transmisión del COVID-19. Asimismo, se identificaron algunas problemáticas a la hora de implementar los modelos matemáticos: la presencia y calidad de los datos de casos diarios en algunos países afectados. Finalmente, se sugiere que los modelos matemáticos estén en constante actualización junto a la publicación de las investigaciones relacionadas con virología y epidemiología de la enfermedad.SciELO PreprintsSciELO PreprintsSciELO Preprints2020-08-10info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/107610.1590/SciELOPreprints.1076spahttps://preprints.scielo.org/index.php/scielo/article/view/1076/1556Copyright (c) 2020 Alexandra Catano-Lopez, Daniel Rojas-Diazhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessCatano-Lopez, AlexandraRojas-Diaz, Danielreponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-08-07T17:50:43Zoai:ops.preprints.scielo.org:preprint/1076Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-08-07T17:50:43SciELO Preprints - SciELOfalse
dc.title.none.fl_str_mv Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review
Modelos discretos de transmisión de COVID-19 y publicaciones preeliminares en la ciencia: una búsqueda sistematizada
title Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review
spellingShingle Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review
Catano-Lopez, Alexandra
Discrete models
control
forecast
Covid-19
modelos discretos
control
pronóstico
title_short Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review
title_full Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review
title_fullStr Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review
title_full_unstemmed Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review
title_sort Discrete COVID-19 Transmission Models and Preliminary Publications in Science: A Systematic review
author Catano-Lopez, Alexandra
author_facet Catano-Lopez, Alexandra
Rojas-Diaz, Daniel
author_role author
author2 Rojas-Diaz, Daniel
author2_role author
dc.contributor.author.fl_str_mv Catano-Lopez, Alexandra
Rojas-Diaz, Daniel
dc.subject.por.fl_str_mv Discrete models
control
forecast
Covid-19
modelos discretos
control
pronóstico
topic Discrete models
control
forecast
Covid-19
modelos discretos
control
pronóstico
description In the Chinese city of Wuhan at the end of 2019, a new respiratory disease known as COVID-19 emerged, caused by the SARS-CoV-2 virus. This disease spreads rapidly worldwide and presents numerous infections and deaths; therefore, the World Health Organization upgraded its category from epidemic to pandemic because of alarming levels of spread, severity, and inaction. Given this situation, different areas of science have approached the study of this disease, among them is mathematical epidemiology through the modeling of the phenomenon; therefore, in this document, we performed a systematic review related to transmission models of COVID-19, specifically discrete models because of the daily report of infection cases around the world. We identified different important disease features implemented in the models, e.g., metapopulations, migration, quarantine, inclusion of latency, and incubation periods, among others. Also, we identified its basic structure, and we found that many papers directly used SIR and SEIR models with no modification, being an excessive simplification of the COVID-19 transmission phenomenon. Likewise, some authors highlighted an important problem during the application of mathematical models: the quality or absence of the daily case data in some affected countries. Finally, the mathematical models should be constantly updated together with the publication of research related to virology and epidemiology of the disease.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-10
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/1076
10.1590/SciELOPreprints.1076
url https://preprints.scielo.org/index.php/scielo/preprint/view/1076
identifier_str_mv 10.1590/SciELOPreprints.1076
dc.language.iso.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/article/view/1076/1556
dc.rights.driver.fl_str_mv Copyright (c) 2020 Alexandra Catano-Lopez, Daniel Rojas-Diaz
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Alexandra Catano-Lopez, Daniel Rojas-Diaz
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:SciELO
instacron:SCI
instname_str SciELO
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - SciELO
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1797047819536695296