Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil

Detalhes bibliográficos
Autor(a) principal: Souza Jr., Gilberto Nerino de
Data de Publicação: 2021
Outros Autores: Braga, Marcus de Barros, Rodrigues, Luana Lorena Silva, Fernandes, Rafael da Silva, Ramos, Rommel Thiago Jucá, Carneiro, Adriana Ribeiro, Brito, Silvana Rossy de, Dolácio, Cícero Jorge Fonseca, Tavares Jr., Ivaldo da Silva, Noronha, Fernando Napoleão, Pinheiro, Raphael Rodrigues, Diniz, Hugo Alex Carneiro, Botelho, Marcel do Nascimento, Vallinoto, Antonio Carlos Rosário, Rocha, Jonas Elias Castro da
Tipo de documento: preprint
Idioma: por
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/2778
Resumo: Objective: Report the university research and extension product denominated ‘Boletim COVID-PA’ which presented projections about the pandemic in the State of Pará, Brazil, with practical, mathematically rigorous and computationally efficient approaches. Methods: The artificial intelligence technique known as Artificial Neural Networks was used to generate thirteen bulletins with short-term projections based on historical data from the State Department of Public Health system. Results: After eight months of projections, the technique generated reliable results with an average accuracy of 97% (147 days observed) for confirmed cases, 96% (161 observed days) for deaths and 86% (72 days observed) for occupancy of intensive care unit beds. Conclusion: These bulletins have become a useful tool for decision making by public managers, assisting in reallocating hospital resources and optimizing COVID-19 control strategies for the various regions of the State of Pará.
id SCI-1_ead7c482d5dfaf16a11b17f3c3c2e394
oai_identifier_str oai:ops.preprints.scielo.org:preprint/2778
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, BrazilBoletín COVID-PA: Informes de proyecciones basadas en inteligencia artificial para enfrentar la pandemia COVID-19 en el estado de Pará, BrasilBoletim COVID-PA: relatos sobre projeções baseadas em inteligência artificial no enfrentamento da pandemia de COVID-19 no estado do ParáCOVID-19Inteligência ArtificialProjeçãoRedes NeuraisTomada de DecisõesCOVID-19Artificial IntelligenceForecastingNeural NetworksDecision MakingObjective: Report the university research and extension product denominated ‘Boletim COVID-PA’ which presented projections about the pandemic in the State of Pará, Brazil, with practical, mathematically rigorous and computationally efficient approaches. Methods: The artificial intelligence technique known as Artificial Neural Networks was used to generate thirteen bulletins with short-term projections based on historical data from the State Department of Public Health system. Results: After eight months of projections, the technique generated reliable results with an average accuracy of 97% (147 days observed) for confirmed cases, 96% (161 observed days) for deaths and 86% (72 days observed) for occupancy of intensive care unit beds. Conclusion: These bulletins have become a useful tool for decision making by public managers, assisting in reallocating hospital resources and optimizing COVID-19 control strategies for the various regions of the State of Pará.Objetivo: Relatar o produto de pesquisa e extensão universitária denominado Boletim COVID-PA, que apresentou projeções sobre o comportamento da pandemia no estado do Pará, Brasil. Métodos: Utilizou-se da técnica de inteligência artificial conhecida como ‘redes neurais artificiais’, para gerar 13 boletins com projeções de curto prazo baseadas nos dados históricos do sistema da Secretaria de Estado de Saúde Pública. Resultados: Após oito meses de projeções, a técnica gerou resultados confiáveis, com precisão média de 97% (147 dias observados) para casos confirmados, 96% (161 dias observados) para óbitos e 86% (72 dias observados) para ocupação de leitos de unidade de terapia intensiva. Conclusão: Esses boletins tornaram-se um instrumento útil para a tomada de decisão de gestores públicos, auxiliando na realocação de recursos hospitalares e otimização das estratégias de controle da COVID-19 nas diversas regiões do estado do Pará.SciELO PreprintsSciELO PreprintsSciELO Preprints2021-08-11info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/277810.1590/s1679-49742021000400012porhttps://preprints.scielo.org/index.php/scielo/article/view/2778/4886Copyright (c) 2021 Gilberto Nerino de Souza Jr., Marcus de Barros Braga, Luana Lorena Silva Rodrigues, Rafael da Silva Fernandes, Rommel Thiago Jucá Ramos, Adriana Ribeiro Carneiro, Silvana Rossy de Brito, Cícero Jorge Fonseca Dolácio, Ivaldo da Silva Tavares Jr., Fernando Napoleão Noronha, Raphael Rodrigues Pinheiro, Hugo Alex Carneiro Diniz, Marcel do Nascimento Botelho, Antonio Carlos Rosário Vallinoto, Jonas Elias Castro da Rochahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSouza Jr., Gilberto Nerino de Braga, Marcus de Barros Rodrigues, Luana Lorena Silva Fernandes, Rafael da Silva Ramos, Rommel Thiago Jucá Carneiro, Adriana Ribeiro Brito, Silvana Rossy de Dolácio, Cícero Jorge Fonseca Tavares Jr., Ivaldo da Silva Noronha, Fernando Napoleão Pinheiro, Raphael Rodrigues Diniz, Hugo Alex Carneiro Botelho, Marcel do Nascimento Vallinoto, Antonio Carlos Rosário Rocha, Jonas Elias Castro da reponame:SciELO Preprintsinstname:SciELOinstacron:SCI2021-08-11T17:21:10Zoai:ops.preprints.scielo.org:preprint/2778Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2021-08-11T17:21:10SciELO Preprints - SciELOfalse
dc.title.none.fl_str_mv Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil
Boletín COVID-PA: Informes de proyecciones basadas en inteligencia artificial para enfrentar la pandemia COVID-19 en el estado de Pará, Brasil
Boletim COVID-PA: relatos sobre projeções baseadas em inteligência artificial no enfrentamento da pandemia de COVID-19 no estado do Pará
title Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil
spellingShingle Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil
Souza Jr., Gilberto Nerino de
COVID-19
Inteligência Artificial
Projeção
Redes Neurais
Tomada de Decisões
COVID-19
Artificial Intelligence
Forecasting
Neural Networks
Decision Making
title_short Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil
title_full Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil
title_fullStr Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil
title_full_unstemmed Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil
title_sort Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil
author Souza Jr., Gilberto Nerino de
author_facet Souza Jr., Gilberto Nerino de
Braga, Marcus de Barros
Rodrigues, Luana Lorena Silva
Fernandes, Rafael da Silva
Ramos, Rommel Thiago Jucá
Carneiro, Adriana Ribeiro
Brito, Silvana Rossy de
Dolácio, Cícero Jorge Fonseca
Tavares Jr., Ivaldo da Silva
Noronha, Fernando Napoleão
Pinheiro, Raphael Rodrigues
Diniz, Hugo Alex Carneiro
Botelho, Marcel do Nascimento
Vallinoto, Antonio Carlos Rosário
Rocha, Jonas Elias Castro da
author_role author
author2 Braga, Marcus de Barros
Rodrigues, Luana Lorena Silva
Fernandes, Rafael da Silva
Ramos, Rommel Thiago Jucá
Carneiro, Adriana Ribeiro
Brito, Silvana Rossy de
Dolácio, Cícero Jorge Fonseca
Tavares Jr., Ivaldo da Silva
Noronha, Fernando Napoleão
Pinheiro, Raphael Rodrigues
Diniz, Hugo Alex Carneiro
Botelho, Marcel do Nascimento
Vallinoto, Antonio Carlos Rosário
Rocha, Jonas Elias Castro da
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Souza Jr., Gilberto Nerino de
Braga, Marcus de Barros
Rodrigues, Luana Lorena Silva
Fernandes, Rafael da Silva
Ramos, Rommel Thiago Jucá
Carneiro, Adriana Ribeiro
Brito, Silvana Rossy de
Dolácio, Cícero Jorge Fonseca
Tavares Jr., Ivaldo da Silva
Noronha, Fernando Napoleão
Pinheiro, Raphael Rodrigues
Diniz, Hugo Alex Carneiro
Botelho, Marcel do Nascimento
Vallinoto, Antonio Carlos Rosário
Rocha, Jonas Elias Castro da
dc.subject.por.fl_str_mv COVID-19
Inteligência Artificial
Projeção
Redes Neurais
Tomada de Decisões
COVID-19
Artificial Intelligence
Forecasting
Neural Networks
Decision Making
topic COVID-19
Inteligência Artificial
Projeção
Redes Neurais
Tomada de Decisões
COVID-19
Artificial Intelligence
Forecasting
Neural Networks
Decision Making
description Objective: Report the university research and extension product denominated ‘Boletim COVID-PA’ which presented projections about the pandemic in the State of Pará, Brazil, with practical, mathematically rigorous and computationally efficient approaches. Methods: The artificial intelligence technique known as Artificial Neural Networks was used to generate thirteen bulletins with short-term projections based on historical data from the State Department of Public Health system. Results: After eight months of projections, the technique generated reliable results with an average accuracy of 97% (147 days observed) for confirmed cases, 96% (161 observed days) for deaths and 86% (72 days observed) for occupancy of intensive care unit beds. Conclusion: These bulletins have become a useful tool for decision making by public managers, assisting in reallocating hospital resources and optimizing COVID-19 control strategies for the various regions of the State of Pará.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-11
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/2778
10.1590/s1679-49742021000400012
url https://preprints.scielo.org/index.php/scielo/preprint/view/2778
identifier_str_mv 10.1590/s1679-49742021000400012
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/article/view/2778/4886
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:SciELO
instacron:SCI
instname_str SciELO
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - SciELO
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1797047824305618944