Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , , , , , , |
Tipo de documento: | preprint |
Idioma: | por |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/2778 |
Resumo: | Objective: Report the university research and extension product denominated ‘Boletim COVID-PA’ which presented projections about the pandemic in the State of Pará, Brazil, with practical, mathematically rigorous and computationally efficient approaches. Methods: The artificial intelligence technique known as Artificial Neural Networks was used to generate thirteen bulletins with short-term projections based on historical data from the State Department of Public Health system. Results: After eight months of projections, the technique generated reliable results with an average accuracy of 97% (147 days observed) for confirmed cases, 96% (161 observed days) for deaths and 86% (72 days observed) for occupancy of intensive care unit beds. Conclusion: These bulletins have become a useful tool for decision making by public managers, assisting in reallocating hospital resources and optimizing COVID-19 control strategies for the various regions of the State of Pará. |
id |
SCI-1_ead7c482d5dfaf16a11b17f3c3c2e394 |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/2778 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, BrazilBoletín COVID-PA: Informes de proyecciones basadas en inteligencia artificial para enfrentar la pandemia COVID-19 en el estado de Pará, BrasilBoletim COVID-PA: relatos sobre projeções baseadas em inteligência artificial no enfrentamento da pandemia de COVID-19 no estado do ParáCOVID-19Inteligência ArtificialProjeçãoRedes NeuraisTomada de DecisõesCOVID-19Artificial IntelligenceForecastingNeural NetworksDecision MakingObjective: Report the university research and extension product denominated ‘Boletim COVID-PA’ which presented projections about the pandemic in the State of Pará, Brazil, with practical, mathematically rigorous and computationally efficient approaches. Methods: The artificial intelligence technique known as Artificial Neural Networks was used to generate thirteen bulletins with short-term projections based on historical data from the State Department of Public Health system. Results: After eight months of projections, the technique generated reliable results with an average accuracy of 97% (147 days observed) for confirmed cases, 96% (161 observed days) for deaths and 86% (72 days observed) for occupancy of intensive care unit beds. Conclusion: These bulletins have become a useful tool for decision making by public managers, assisting in reallocating hospital resources and optimizing COVID-19 control strategies for the various regions of the State of Pará.Objetivo: Relatar o produto de pesquisa e extensão universitária denominado Boletim COVID-PA, que apresentou projeções sobre o comportamento da pandemia no estado do Pará, Brasil. Métodos: Utilizou-se da técnica de inteligência artificial conhecida como ‘redes neurais artificiais’, para gerar 13 boletins com projeções de curto prazo baseadas nos dados históricos do sistema da Secretaria de Estado de Saúde Pública. Resultados: Após oito meses de projeções, a técnica gerou resultados confiáveis, com precisão média de 97% (147 dias observados) para casos confirmados, 96% (161 dias observados) para óbitos e 86% (72 dias observados) para ocupação de leitos de unidade de terapia intensiva. Conclusão: Esses boletins tornaram-se um instrumento útil para a tomada de decisão de gestores públicos, auxiliando na realocação de recursos hospitalares e otimização das estratégias de controle da COVID-19 nas diversas regiões do estado do Pará.SciELO PreprintsSciELO PreprintsSciELO Preprints2021-08-11info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/277810.1590/s1679-49742021000400012porhttps://preprints.scielo.org/index.php/scielo/article/view/2778/4886Copyright (c) 2021 Gilberto Nerino de Souza Jr., Marcus de Barros Braga, Luana Lorena Silva Rodrigues, Rafael da Silva Fernandes, Rommel Thiago Jucá Ramos, Adriana Ribeiro Carneiro, Silvana Rossy de Brito, Cícero Jorge Fonseca Dolácio, Ivaldo da Silva Tavares Jr., Fernando Napoleão Noronha, Raphael Rodrigues Pinheiro, Hugo Alex Carneiro Diniz, Marcel do Nascimento Botelho, Antonio Carlos Rosário Vallinoto, Jonas Elias Castro da Rochahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSouza Jr., Gilberto Nerino de Braga, Marcus de Barros Rodrigues, Luana Lorena Silva Fernandes, Rafael da Silva Ramos, Rommel Thiago Jucá Carneiro, Adriana Ribeiro Brito, Silvana Rossy de Dolácio, Cícero Jorge Fonseca Tavares Jr., Ivaldo da Silva Noronha, Fernando Napoleão Pinheiro, Raphael Rodrigues Diniz, Hugo Alex Carneiro Botelho, Marcel do Nascimento Vallinoto, Antonio Carlos Rosário Rocha, Jonas Elias Castro da reponame:SciELO Preprintsinstname:SciELOinstacron:SCI2021-08-11T17:21:10Zoai:ops.preprints.scielo.org:preprint/2778Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2021-08-11T17:21:10SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil Boletín COVID-PA: Informes de proyecciones basadas en inteligencia artificial para enfrentar la pandemia COVID-19 en el estado de Pará, Brasil Boletim COVID-PA: relatos sobre projeções baseadas em inteligência artificial no enfrentamento da pandemia de COVID-19 no estado do Pará |
title |
Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil |
spellingShingle |
Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil Souza Jr., Gilberto Nerino de COVID-19 Inteligência Artificial Projeção Redes Neurais Tomada de Decisões COVID-19 Artificial Intelligence Forecasting Neural Networks Decision Making |
title_short |
Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil |
title_full |
Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil |
title_fullStr |
Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil |
title_full_unstemmed |
Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil |
title_sort |
Boletim COVID-PA: Reports on artificial intelligence-based forecasting to the facing of pandemic COVID-19 in the state of Pará, Brazil |
author |
Souza Jr., Gilberto Nerino de |
author_facet |
Souza Jr., Gilberto Nerino de Braga, Marcus de Barros Rodrigues, Luana Lorena Silva Fernandes, Rafael da Silva Ramos, Rommel Thiago Jucá Carneiro, Adriana Ribeiro Brito, Silvana Rossy de Dolácio, Cícero Jorge Fonseca Tavares Jr., Ivaldo da Silva Noronha, Fernando Napoleão Pinheiro, Raphael Rodrigues Diniz, Hugo Alex Carneiro Botelho, Marcel do Nascimento Vallinoto, Antonio Carlos Rosário Rocha, Jonas Elias Castro da |
author_role |
author |
author2 |
Braga, Marcus de Barros Rodrigues, Luana Lorena Silva Fernandes, Rafael da Silva Ramos, Rommel Thiago Jucá Carneiro, Adriana Ribeiro Brito, Silvana Rossy de Dolácio, Cícero Jorge Fonseca Tavares Jr., Ivaldo da Silva Noronha, Fernando Napoleão Pinheiro, Raphael Rodrigues Diniz, Hugo Alex Carneiro Botelho, Marcel do Nascimento Vallinoto, Antonio Carlos Rosário Rocha, Jonas Elias Castro da |
author2_role |
author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Souza Jr., Gilberto Nerino de Braga, Marcus de Barros Rodrigues, Luana Lorena Silva Fernandes, Rafael da Silva Ramos, Rommel Thiago Jucá Carneiro, Adriana Ribeiro Brito, Silvana Rossy de Dolácio, Cícero Jorge Fonseca Tavares Jr., Ivaldo da Silva Noronha, Fernando Napoleão Pinheiro, Raphael Rodrigues Diniz, Hugo Alex Carneiro Botelho, Marcel do Nascimento Vallinoto, Antonio Carlos Rosário Rocha, Jonas Elias Castro da |
dc.subject.por.fl_str_mv |
COVID-19 Inteligência Artificial Projeção Redes Neurais Tomada de Decisões COVID-19 Artificial Intelligence Forecasting Neural Networks Decision Making |
topic |
COVID-19 Inteligência Artificial Projeção Redes Neurais Tomada de Decisões COVID-19 Artificial Intelligence Forecasting Neural Networks Decision Making |
description |
Objective: Report the university research and extension product denominated ‘Boletim COVID-PA’ which presented projections about the pandemic in the State of Pará, Brazil, with practical, mathematically rigorous and computationally efficient approaches. Methods: The artificial intelligence technique known as Artificial Neural Networks was used to generate thirteen bulletins with short-term projections based on historical data from the State Department of Public Health system. Results: After eight months of projections, the technique generated reliable results with an average accuracy of 97% (147 days observed) for confirmed cases, 96% (161 observed days) for deaths and 86% (72 days observed) for occupancy of intensive care unit beds. Conclusion: These bulletins have become a useful tool for decision making by public managers, assisting in reallocating hospital resources and optimizing COVID-19 control strategies for the various regions of the State of Pará. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-11 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/2778 10.1590/s1679-49742021000400012 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/2778 |
identifier_str_mv |
10.1590/s1679-49742021000400012 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/2778/4886 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047824305618944 |