COVID-19 in Rio de Janeiro municipality: spatial distribution of the first deaths and cases confirmed
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | preprint |
Idioma: | por |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/130 |
Resumo: | Objective: To analyze and describe the spatial distribution of the first confirmed cases and deaths of COVID-19 in Rio de Janeiro and its association with the Social Development Index (SDI). Methods: Data from confirmed cases and deaths of SARSCoV-2 between March 6 and April 10, 2020 were used. Incidence rates (IR), mortality (MR), lethality and excess risk were calculated. Results: The COVID- IR is 26.8, the MR 1.36 (both per 100 thousand inhabitants) and the lethality is 5%. The excess risk assessed that eight neighborhoods have an IR of 4-12 times greater than the municipality. Moran's I and LISA demonstrate global and local spatial autocorrelation. The regression demonstrated statistical significance between the SDI and the IR and MR. Conclusion: The elaboration of emergency plans against COVID-19 must consider the socioeconomic-cultural characteristics of the municipality. |
id |
SCI-1_ed7c72ae0e9e41b3053020e6c228e368 |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/130 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
COVID-19 in Rio de Janeiro municipality: spatial distribution of the first deaths and cases confirmedCOVID-19 en la ciudad de Rio de Janeiro: distribución espacial de los primeros casos confirmados y muertesCOVID-19 no município Rio de Janeiro: distribuição espacial dos primeiros casos e óbitos confirmadosSARS-CoV-2COVID-19Análise EspacialEpidemiologiaSaúde ColetivaBrasilSARS-CoV-2COVID-19Spatial AnalysisEpidemiologyPublic HealthBrazilSARS-CoV-2COVID-19Análisis EspacialEpidemiologíaSalud PúblicaBrasilObjective: To analyze and describe the spatial distribution of the first confirmed cases and deaths of COVID-19 in Rio de Janeiro and its association with the Social Development Index (SDI). Methods: Data from confirmed cases and deaths of SARSCoV-2 between March 6 and April 10, 2020 were used. Incidence rates (IR), mortality (MR), lethality and excess risk were calculated. Results: The COVID- IR is 26.8, the MR 1.36 (both per 100 thousand inhabitants) and the lethality is 5%. The excess risk assessed that eight neighborhoods have an IR of 4-12 times greater than the municipality. Moran's I and LISA demonstrate global and local spatial autocorrelation. The regression demonstrated statistical significance between the SDI and the IR and MR. Conclusion: The elaboration of emergency plans against COVID-19 must consider the socioeconomic-cultural characteristics of the municipality.Objetivo: analizar y describir la distribución espacial de los primeros casos confirmados y muertes de COVID-19 en Río de Janeiro y su asociación con el Índice de Desarrollo Social (IDS). Métodos: Se utilizaron datos sobre casos confirmados de SARS-CoV-2 y muertes entre el 6 de marzo y el 10 de abril de 2020. Tasas de incidencia (TI), mortalidad (TM), letalidad y excess risk fueran calculadas. Resultados: La TI de COVID-19 es 26.8, la TM 1.36 (ambas por cada 100 mil habitantes) y la letalidad es 5%. El excess risk evaluó que ocho vecindarios tienen una TI de 4 a 12 veces mayor que la del municipio. El I de Moran y LISA demuestran autocorrelación espacial global y local. La regresión demostró significación estadística entre el IDS y el TI y TM. Conclusión: La creación de planes de emergencia contra COVID-19 debe considerar las características socioeconómicasculturales del municipio.Objetivo: Analisar e descrever a distribuição espacial dos primeiros casos e óbitos confirmados de COVID-19 do Rio de Janeiro e sua associação com o Índice de Desenvolvimento Social (IDS). Métodos: Foram utilizados dados de casos e óbitos confirmados de SARS-CoV-2 entre 6 de março e 10 de abril de 2020. Calculou-se as taxas de incidência (TI), mortalidade (TM), letalidade e excess risk. Resultados: A TI de COVID-19 é de 26,8, a TM 1,36 (ambas por 100 mil habitantes) e a letalidade é 5%. O excess risk avaliou que oito bairros possuem TI de 4-12 vezes maior que a do município. O I de Moran e o LISA demonstram uma autocorrelação espacial global e local. A regressão demonstrou significância estatística entre o IDS e as TI e TM. Conclusão: A criação de planos emergenciais contra a COVID-19 deve considerar as características sócio-econômicas-culturais do município.SciELO PreprintsSciELO PreprintsSciELO Preprints2020-04-22info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/13010.1590/SciELOPreprints.130porhttps://preprints.scielo.org/index.php/scielo/article/view/130/154Copyright (c) 2020 João Roberto Cavalcante, Ariane de Jesus Lopes de Abreuhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessCavalcante, João RobertoAbreu, Ariane de Jesus Lopes dereponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-04-22T04:10:43Zoai:ops.preprints.scielo.org:preprint/130Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-04-22T04:10:43SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
COVID-19 in Rio de Janeiro municipality: spatial distribution of the first deaths and cases confirmed COVID-19 en la ciudad de Rio de Janeiro: distribución espacial de los primeros casos confirmados y muertes COVID-19 no município Rio de Janeiro: distribuição espacial dos primeiros casos e óbitos confirmados |
title |
COVID-19 in Rio de Janeiro municipality: spatial distribution of the first deaths and cases confirmed |
spellingShingle |
COVID-19 in Rio de Janeiro municipality: spatial distribution of the first deaths and cases confirmed Cavalcante, João Roberto SARS-CoV-2 COVID-19 Análise Espacial Epidemiologia Saúde Coletiva Brasil SARS-CoV-2 COVID-19 Spatial Analysis Epidemiology Public Health Brazil SARS-CoV-2 COVID-19 Análisis Espacial Epidemiología Salud Pública Brasil |
title_short |
COVID-19 in Rio de Janeiro municipality: spatial distribution of the first deaths and cases confirmed |
title_full |
COVID-19 in Rio de Janeiro municipality: spatial distribution of the first deaths and cases confirmed |
title_fullStr |
COVID-19 in Rio de Janeiro municipality: spatial distribution of the first deaths and cases confirmed |
title_full_unstemmed |
COVID-19 in Rio de Janeiro municipality: spatial distribution of the first deaths and cases confirmed |
title_sort |
COVID-19 in Rio de Janeiro municipality: spatial distribution of the first deaths and cases confirmed |
author |
Cavalcante, João Roberto |
author_facet |
Cavalcante, João Roberto Abreu, Ariane de Jesus Lopes de |
author_role |
author |
author2 |
Abreu, Ariane de Jesus Lopes de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Cavalcante, João Roberto Abreu, Ariane de Jesus Lopes de |
dc.subject.por.fl_str_mv |
SARS-CoV-2 COVID-19 Análise Espacial Epidemiologia Saúde Coletiva Brasil SARS-CoV-2 COVID-19 Spatial Analysis Epidemiology Public Health Brazil SARS-CoV-2 COVID-19 Análisis Espacial Epidemiología Salud Pública Brasil |
topic |
SARS-CoV-2 COVID-19 Análise Espacial Epidemiologia Saúde Coletiva Brasil SARS-CoV-2 COVID-19 Spatial Analysis Epidemiology Public Health Brazil SARS-CoV-2 COVID-19 Análisis Espacial Epidemiología Salud Pública Brasil |
description |
Objective: To analyze and describe the spatial distribution of the first confirmed cases and deaths of COVID-19 in Rio de Janeiro and its association with the Social Development Index (SDI). Methods: Data from confirmed cases and deaths of SARSCoV-2 between March 6 and April 10, 2020 were used. Incidence rates (IR), mortality (MR), lethality and excess risk were calculated. Results: The COVID- IR is 26.8, the MR 1.36 (both per 100 thousand inhabitants) and the lethality is 5%. The excess risk assessed that eight neighborhoods have an IR of 4-12 times greater than the municipality. Moran's I and LISA demonstrate global and local spatial autocorrelation. The regression demonstrated statistical significance between the SDI and the IR and MR. Conclusion: The elaboration of emergency plans against COVID-19 must consider the socioeconomic-cultural characteristics of the municipality. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-22 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/130 10.1590/SciELOPreprints.130 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/130 |
identifier_str_mv |
10.1590/SciELOPreprints.130 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/130/154 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 João Roberto Cavalcante, Ariane de Jesus Lopes de Abreu https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 João Roberto Cavalcante, Ariane de Jesus Lopes de Abreu https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047816638431232 |