Lockdown as an intervention measure to mitigate the spread of COVID-19: a modeling study

Detalhes bibliográficos
Autor(a) principal: Santana-Santos, Eduesley
Data de Publicação: 2020
Outros Autores: Gois, Aédson Nascimento, Laureano, Estêvão Esmi, Santos, David da Silva, Santos, Luiz Fernando Souza, Sánchez, Daniel Eduardo, Vieira, Rita de Cássia Almeida, Oliveira, Jussiely Cunha
Tipo de documento: preprint
Idioma: por
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/829
Resumo: Introduction: This work aims to develop a biomathematical model of transmission of COVID-19, in the State of Sergipe, Brazil, to estimate the distribution of cases over time and to project the impact on the spread of the epidemic outbreak due to interventions and control measures on the local population. Methods: Epidemiological mathematical modeling study, carried out to analyze the dynamics of accumulated cases of COVID-19, which used a logistic growth model that adds a term of withdrawal of individuals as a control measure. Three possible scenarios of COVID-19 propagation based on three different withdrawal rates of individuals were simulated. Each of the rates is adjusted with actual data on the number of infected and control measures on the population. Results: The extreme measure of total isolation, or lockdown, would be the best scenario, presenting a lower incidence of infected, when compared to the other measures. The number of infected would grow slowly over the months and the number of symptomatic individuals in this scenario would be 40,265 cases. It was noticed that the State of Sergipe is still in the initial phase of the disease, in any of the scenarios. It was possible to observe that the peak of cases and balance, in the current scenario of social isolation, will take place when the new support capacity is reached, at the end of August in approximately 1,171,353 infected individuals. Conclusion: It was noticed that lockdown is the intervention with greater capacity to mitigate the spread of the virus by the population. Keywords: COVID-19, Coronavirus Infection, Social Isolation, Epidemiology.
id SCI-1_f40ec17aa4eb3f56d678e1a6afd6787d
oai_identifier_str oai:ops.preprints.scielo.org:preprint/829
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling Lockdown as an intervention measure to mitigate the spread of COVID-19: a modeling study Lockdown como medida de intervenção para mitigar a propagação da COVID-19: um estudo de modelagemEpidemiologiaIsolamento SocialCOVID-19Infecção por CoronavírusEpidemiologySocial IsolationCOVID-19Coronavirus infectionsIntroduction: This work aims to develop a biomathematical model of transmission of COVID-19, in the State of Sergipe, Brazil, to estimate the distribution of cases over time and to project the impact on the spread of the epidemic outbreak due to interventions and control measures on the local population. Methods: Epidemiological mathematical modeling study, carried out to analyze the dynamics of accumulated cases of COVID-19, which used a logistic growth model that adds a term of withdrawal of individuals as a control measure. Three possible scenarios of COVID-19 propagation based on three different withdrawal rates of individuals were simulated. Each of the rates is adjusted with actual data on the number of infected and control measures on the population. Results: The extreme measure of total isolation, or lockdown, would be the best scenario, presenting a lower incidence of infected, when compared to the other measures. The number of infected would grow slowly over the months and the number of symptomatic individuals in this scenario would be 40,265 cases. It was noticed that the State of Sergipe is still in the initial phase of the disease, in any of the scenarios. It was possible to observe that the peak of cases and balance, in the current scenario of social isolation, will take place when the new support capacity is reached, at the end of August in approximately 1,171,353 infected individuals. Conclusion: It was noticed that lockdown is the intervention with greater capacity to mitigate the spread of the virus by the population. Keywords: COVID-19, Coronavirus Infection, Social Isolation, Epidemiology.Objetivo: Desarrollar un modelo biomatemático de transmisión de la enfermedad COVID-19, en el estado Sergipe, Brasil, a fin de estimar la distribución de los casos a lo largo del tiempo y proyectar el impacto de las intervenciones y medidas de control sobre la población local sobre la propagación del brote epidémico. Métodos: Estudio de modelaje matemático epidemiológico, realizado para analizar la dinámica de los casos acumulados de COVID-19, utilizando un modelo de crecimiento logístico que agrega un término de retirada de individuos como medida de control. Fueron simulados tres posibles escenarios de propagación de COVID-19 basados en tres diferentes tasas de retirada de individuos. Cada una de las tasas fue ajustada con datos reales sobre el número de infectados y las medidas de control sobre la población.  Resultados: La medida extrema de aislamiento total, el lockdown, sería el mejor escenario, presentando menor incidencia de infectados, comparando con las demás medidas. El número de infectados crecería lentamente a lo largo de los meses y el número de individuos sintomáticos en ese escenario sería de 40.265 casos. En todos los escenarios estudiados, se percibió que el estado Sergipe aún se encuentra en la fase inicial de la enfermedad.  Fue posible observar que el pico de los casos y el equilibrio, en el escenario actual de aislamiento social, se darán al alcanzar la nueva capacidad soporte, al final de agosto con aproximadamente 1.171.353 individuos infectados. Conclusión: Se percibió que el lockdown es la intervención con mayor capacidad de mitigar la propagación del virus en la población.Introdução: Este trabalho visa desenvolver um modelo biomatemático de transmissão da COVID-19, no estado de Sergipe, Brasil, a fim de estimar a distribuição dos casos ao longo do tempo e projetar o impacto na propagação do surto epidêmico devido às intervenções e medidas de controle sobre a população local. Métodos: Estudo de modelagem matemática epidemiológica, realizado para analisar a dinâmica dos casos acumulados de COVID-19, que utilizou um modelo de crescimento logístico que adiciona um termo de retirada de indivíduos como medida de controle. Foram simulados três possíveis cenários de propagação da COVID-19 baseados em três diferentes taxas de retirada de indivíduos. Cada uma das taxas é ajustada com dados reais sobre número de infetados e as medidas de controle sobre a população.  Resultados: A medida extrema de isolamento total, ou lockdown, seria o melhor cenário, apresentando menor incidência de infectados, quando comparado às demais medidas. O número de infectados cresceria vagarosamente ao longo dos meses e o número de indivíduos sintomáticos nesse cenário seria de 40.265 casos. Percebeu-se que o Estado de Sergipe ainda encontra-se na fase inicial da doença, em quaisquer dos cenários. Foi possível observar que o pico dos casos e o equilíbrio, no cenário atual de isolamento social, se darão quando atingir a nova capacidade suporte, ao final de agosto em aproximadamente 1.171.353 indivíduos infectados. Conclusão: Percebeu-se que o lockdown é a intervenção com maior capacidade de mitigação da propagação do vírus pela população.SciELO PreprintsSciELO PreprintsSciELO Preprints2020-06-23info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/82910.1590/SciELOPreprints.829porhttps://preprints.scielo.org/index.php/scielo/article/view/829/1143Copyright (c) 2020 Eduesley Santana-Santos, Aédson Nascimento Gois, Estêvão Esmi Laureano, David da Silva Santos, Luiz Fernando Souza Santos, Daniel Eduardo Sánchez, Rita de Cássia Almeida Vieira, Jussiely Cunha Oliveirahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSantana-Santos, EduesleyGois, Aédson NascimentoLaureano, Estêvão EsmiSantos, David da SilvaSantos, Luiz Fernando Souza Sánchez, Daniel EduardoVieira, Rita de Cássia AlmeidaOliveira, Jussiely Cunhareponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-06-22T19:03:41Zoai:ops.preprints.scielo.org:preprint/829Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-06-22T19:03:41SciELO Preprints - SciELOfalse
dc.title.none.fl_str_mv Lockdown as an intervention measure to mitigate the spread of COVID-19: a modeling study
Lockdown como medida de intervenção para mitigar a propagação da COVID-19: um estudo de modelagem
title Lockdown as an intervention measure to mitigate the spread of COVID-19: a modeling study
spellingShingle Lockdown as an intervention measure to mitigate the spread of COVID-19: a modeling study
Santana-Santos, Eduesley
Epidemiologia
Isolamento Social
COVID-19
Infecção por Coronavírus
Epidemiology
Social Isolation
COVID-19
Coronavirus infections
title_short Lockdown as an intervention measure to mitigate the spread of COVID-19: a modeling study
title_full Lockdown as an intervention measure to mitigate the spread of COVID-19: a modeling study
title_fullStr Lockdown as an intervention measure to mitigate the spread of COVID-19: a modeling study
title_full_unstemmed Lockdown as an intervention measure to mitigate the spread of COVID-19: a modeling study
title_sort Lockdown as an intervention measure to mitigate the spread of COVID-19: a modeling study
author Santana-Santos, Eduesley
author_facet Santana-Santos, Eduesley
Gois, Aédson Nascimento
Laureano, Estêvão Esmi
Santos, David da Silva
Santos, Luiz Fernando Souza
Sánchez, Daniel Eduardo
Vieira, Rita de Cássia Almeida
Oliveira, Jussiely Cunha
author_role author
author2 Gois, Aédson Nascimento
Laureano, Estêvão Esmi
Santos, David da Silva
Santos, Luiz Fernando Souza
Sánchez, Daniel Eduardo
Vieira, Rita de Cássia Almeida
Oliveira, Jussiely Cunha
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Santana-Santos, Eduesley
Gois, Aédson Nascimento
Laureano, Estêvão Esmi
Santos, David da Silva
Santos, Luiz Fernando Souza
Sánchez, Daniel Eduardo
Vieira, Rita de Cássia Almeida
Oliveira, Jussiely Cunha
dc.subject.por.fl_str_mv Epidemiologia
Isolamento Social
COVID-19
Infecção por Coronavírus
Epidemiology
Social Isolation
COVID-19
Coronavirus infections
topic Epidemiologia
Isolamento Social
COVID-19
Infecção por Coronavírus
Epidemiology
Social Isolation
COVID-19
Coronavirus infections
description Introduction: This work aims to develop a biomathematical model of transmission of COVID-19, in the State of Sergipe, Brazil, to estimate the distribution of cases over time and to project the impact on the spread of the epidemic outbreak due to interventions and control measures on the local population. Methods: Epidemiological mathematical modeling study, carried out to analyze the dynamics of accumulated cases of COVID-19, which used a logistic growth model that adds a term of withdrawal of individuals as a control measure. Three possible scenarios of COVID-19 propagation based on three different withdrawal rates of individuals were simulated. Each of the rates is adjusted with actual data on the number of infected and control measures on the population. Results: The extreme measure of total isolation, or lockdown, would be the best scenario, presenting a lower incidence of infected, when compared to the other measures. The number of infected would grow slowly over the months and the number of symptomatic individuals in this scenario would be 40,265 cases. It was noticed that the State of Sergipe is still in the initial phase of the disease, in any of the scenarios. It was possible to observe that the peak of cases and balance, in the current scenario of social isolation, will take place when the new support capacity is reached, at the end of August in approximately 1,171,353 infected individuals. Conclusion: It was noticed that lockdown is the intervention with greater capacity to mitigate the spread of the virus by the population. Keywords: COVID-19, Coronavirus Infection, Social Isolation, Epidemiology.
publishDate 2020
dc.date.none.fl_str_mv 2020-06-23
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/829
10.1590/SciELOPreprints.829
url https://preprints.scielo.org/index.php/scielo/preprint/view/829
identifier_str_mv 10.1590/SciELOPreprints.829
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/article/view/829/1143
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:SciELO
instacron:SCI
instname_str SciELO
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - SciELO
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1797047818659037184