Automatic pose detection in farm animals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | preprint |
Idioma: | spa |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/3705 |
Resumo: | Contextualization: Animals use a wide range of variations on their body poses that can be interpreted as information about their health, welfare, or activity level. However, direct observation of these poses is a great time-consuming activity and economically unfeasible task for farmers. Although, with the use of computer vision techniques, it is possible to implement automatic observation systems on farms making this complicated and costly activity a viable alternative. Knowledge gap: Currently, there is a lack of a pose estimation model exclusively for farm animals, which allows the development of automatic posture detection systems. Purpose: The objective of this work was to evaluate the performance of a re-trained neural network model for the detection of poses in some ruminant species and horses. Methodology: More than ten thousand images of ruminants and horses were downloaded from the Imagenet database. From these images, 2000 cattle and 591 other species were selected for re-training and evaluation of the model, respectively. These images were labelled with the COCO Annotator software. This process consisted of the manual identification of eight key points on the animals’ anatomy in each image. The retraining process was carried out with the detectron2 library in Python. Object Keypoint Similarity was used to quantify the precision of the model. Results and conclusions: The Object Keypoint Similarity index established that the learning developed by the model to identify key points in cattle can be used for the same task in other farm animals. Horses and buffaloes had the best detection results. In conclusion, a relatively small data set of position in animals allows evaluating the generalizability of the inference of the models within (cattle) and outside the domain (other ruminants and equines). This type of work serves as a baseline for the development of automatic farm animal monitoring systems. |
id |
SCI-1_fcbdc32abcf6e440479a6a01834a73ee |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/3705 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Automatic pose detection in farm animalsDetección automática de posición corporal en animales de granjaDeep LearningPrecision LivestockAutomationAprendizaje profundoGanadería de precisiónAutomatizaciónContextualization: Animals use a wide range of variations on their body poses that can be interpreted as information about their health, welfare, or activity level. However, direct observation of these poses is a great time-consuming activity and economically unfeasible task for farmers. Although, with the use of computer vision techniques, it is possible to implement automatic observation systems on farms making this complicated and costly activity a viable alternative. Knowledge gap: Currently, there is a lack of a pose estimation model exclusively for farm animals, which allows the development of automatic posture detection systems. Purpose: The objective of this work was to evaluate the performance of a re-trained neural network model for the detection of poses in some ruminant species and horses. Methodology: More than ten thousand images of ruminants and horses were downloaded from the Imagenet database. From these images, 2000 cattle and 591 other species were selected for re-training and evaluation of the model, respectively. These images were labelled with the COCO Annotator software. This process consisted of the manual identification of eight key points on the animals’ anatomy in each image. The retraining process was carried out with the detectron2 library in Python. Object Keypoint Similarity was used to quantify the precision of the model. Results and conclusions: The Object Keypoint Similarity index established that the learning developed by the model to identify key points in cattle can be used for the same task in other farm animals. Horses and buffaloes had the best detection results. In conclusion, a relatively small data set of position in animals allows evaluating the generalizability of the inference of the models within (cattle) and outside the domain (other ruminants and equines). This type of work serves as a baseline for the development of automatic farm animal monitoring systems.Contextualización: Los animales utilizan una amplia gama de variaciones en sus poses corporales que puede ser interpretada como información sobre su estado de salud, bienestar o actividad individual. Sin embargo, la observación directa de estas posiciones es una tarea que demanda tiempo y es económicamente inviable en las empresas pecuarias. Gracias a las técnicas de visión por computador es posible que la implementación de sistemas de observación automática en las granjas sea una alternativa viable. Vacío de conocimiento: Actualmente no existe un modelo de estimación de pose de uso exclusivo con animales de granja que permita el desarrollo de sistemas de detección automática de posturas. Propósito: El objetivo de este trabajo fue evaluar el desempeño de un modelo de redes neuronales re-entrenado para la detección de poses en algunas especies de rumiantes y en caballos. Metodología: De la base de datos Imagenet, se descargaron más de diez mil imágenes de rumiantes y equinos. De estas imágenes, se seleccionaron 2000 de vacunos y 591 de otras especies para el re-entrenamiento y evaluación del modelo, respectivamente. Estas imágenes fueron etiquetadas con el programa COCO Annotator. Este proceso consistió en la identificación manual de ocho puntos claves de la anatomía de los animales en cada imagen. El proceso de re-entrenamiento fue realizado con la librería detectron2 en Python. Para cuantificar la precisión del modelo se utilizó la similitud de puntos claves de objeto. Resultados y conclusiones: El índice de similitud de puntos claves de objeto permitió establecer que el aprendizaje desarrollado por el modelo para identificar puntos clave en vacunos puede ser utilizado para la misma tarea en otros animales de granja. Caballos y búfalos presentaron los mejores resultados de detección. En conclusión, un conjunto de datos relativamente pequeño de la posición en animales permite evaluar la generalización de la inferencia de los modelos dentro (vacunos) y fuera del dominio (otros rumiantes y equinos). Este tipo trabajos sirven como línea base para el desarrollo de sistemas de monitoreo automático de animales de granja.SciELO PreprintsSciELO PreprintsSciELO Preprints2022-03-08info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/370510.1590/SciELOPreprints.3705spahttps://preprints.scielo.org/index.php/scielo/article/view/3705/6856Copyright (c) 2022 John Fredy Ramirez Agudelo, Jose Fernando Guarín Montoya, Sebastian Bedoya Mazohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAgudelo, John Fredy RamirezMontoya, Jose Fernando GuarínMazo, Sebastian Bedoyareponame:SciELO Preprintsinstname:SciELOinstacron:SCI2022-03-02T18:45:22Zoai:ops.preprints.scielo.org:preprint/3705Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2022-03-02T18:45:22SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Automatic pose detection in farm animals Detección automática de posición corporal en animales de granja |
title |
Automatic pose detection in farm animals |
spellingShingle |
Automatic pose detection in farm animals Agudelo, John Fredy Ramirez Deep Learning Precision Livestock Automation Aprendizaje profundo Ganadería de precisión Automatización |
title_short |
Automatic pose detection in farm animals |
title_full |
Automatic pose detection in farm animals |
title_fullStr |
Automatic pose detection in farm animals |
title_full_unstemmed |
Automatic pose detection in farm animals |
title_sort |
Automatic pose detection in farm animals |
author |
Agudelo, John Fredy Ramirez |
author_facet |
Agudelo, John Fredy Ramirez Montoya, Jose Fernando Guarín Mazo, Sebastian Bedoya |
author_role |
author |
author2 |
Montoya, Jose Fernando Guarín Mazo, Sebastian Bedoya |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Agudelo, John Fredy Ramirez Montoya, Jose Fernando Guarín Mazo, Sebastian Bedoya |
dc.subject.por.fl_str_mv |
Deep Learning Precision Livestock Automation Aprendizaje profundo Ganadería de precisión Automatización |
topic |
Deep Learning Precision Livestock Automation Aprendizaje profundo Ganadería de precisión Automatización |
description |
Contextualization: Animals use a wide range of variations on their body poses that can be interpreted as information about their health, welfare, or activity level. However, direct observation of these poses is a great time-consuming activity and economically unfeasible task for farmers. Although, with the use of computer vision techniques, it is possible to implement automatic observation systems on farms making this complicated and costly activity a viable alternative. Knowledge gap: Currently, there is a lack of a pose estimation model exclusively for farm animals, which allows the development of automatic posture detection systems. Purpose: The objective of this work was to evaluate the performance of a re-trained neural network model for the detection of poses in some ruminant species and horses. Methodology: More than ten thousand images of ruminants and horses were downloaded from the Imagenet database. From these images, 2000 cattle and 591 other species were selected for re-training and evaluation of the model, respectively. These images were labelled with the COCO Annotator software. This process consisted of the manual identification of eight key points on the animals’ anatomy in each image. The retraining process was carried out with the detectron2 library in Python. Object Keypoint Similarity was used to quantify the precision of the model. Results and conclusions: The Object Keypoint Similarity index established that the learning developed by the model to identify key points in cattle can be used for the same task in other farm animals. Horses and buffaloes had the best detection results. In conclusion, a relatively small data set of position in animals allows evaluating the generalizability of the inference of the models within (cattle) and outside the domain (other ruminants and equines). This type of work serves as a baseline for the development of automatic farm animal monitoring systems. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-08 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/3705 10.1590/SciELOPreprints.3705 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/3705 |
identifier_str_mv |
10.1590/SciELOPreprints.3705 |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/3705/6856 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 John Fredy Ramirez Agudelo, Jose Fernando Guarín Montoya, Sebastian Bedoya Mazo https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 John Fredy Ramirez Agudelo, Jose Fernando Guarín Montoya, Sebastian Bedoya Mazo https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047827336003584 |