Dynamic mapping of the probability of infestation by arbovirus urban vectors in the municipalities of Rio Grande do Sul state, Brazil, 2016-2017
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | preprint |
Idioma: | por |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/1637 |
Resumo: | Objective: To compare the official mapping with the probabilistic mapping of infestation by Aedes spp. in Rio Grande do Sul municipalities, Brazil. Methods: Ecological study analyzing samples of mosquito breeding sites collected in 2016-2017; official classification was obtained from epidemiological reports, and infestation per municipality and week was estimated by fitting a dynamic site-occupancy model to data from municipal epidemiological surveillance. Results: 187,245 samples collected in 473 municipalities returned 10,648 detections of Aedes aegypti, and 8,414 detections of Aedes albopictus.; official mapping agrees with the probabilistic mapping in municipalities from northwestern and western regions. These mappings disagree in eastern, center, northeastern and southern regions, revealing municipalities not officially infested with high infestation probability and notification of arbovirus. Conclusion: While official classification correctly identifies critically infested municipalities from northwestern and western regions, it did not identify infestation in municipalities with false negative errors and where infestation varies over time. |
id |
SCI-1_ffe31e836b248c82c894df69ccacfe8d |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/1637 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Dynamic mapping of the probability of infestation by arbovirus urban vectors in the municipalities of Rio Grande do Sul state, Brazil, 2016-2017Mapeo dinámico de la probabilidad de infestación por vectores urbanos de arbovirus en los municipios de Rio Grande do Sul, Brasil, 2016-2017Mapeamento dinâmico da probabilidade de infestação por vetores urbanos de arbovírus nos municípios do Rio Grande do Sul, 2016-2017AedesEstudos EcológicosModelos TeóricosVetores de DoençasVigilância EpidemiológicaAedesDisease VectorsEcological StudiesEpidemiological SurveillanceTheoretical ModelsObjective: To compare the official mapping with the probabilistic mapping of infestation by Aedes spp. in Rio Grande do Sul municipalities, Brazil. Methods: Ecological study analyzing samples of mosquito breeding sites collected in 2016-2017; official classification was obtained from epidemiological reports, and infestation per municipality and week was estimated by fitting a dynamic site-occupancy model to data from municipal epidemiological surveillance. Results: 187,245 samples collected in 473 municipalities returned 10,648 detections of Aedes aegypti, and 8,414 detections of Aedes albopictus.; official mapping agrees with the probabilistic mapping in municipalities from northwestern and western regions. These mappings disagree in eastern, center, northeastern and southern regions, revealing municipalities not officially infested with high infestation probability and notification of arbovirus. Conclusion: While official classification correctly identifies critically infested municipalities from northwestern and western regions, it did not identify infestation in municipalities with false negative errors and where infestation varies over time.Objetivo: Comparar o mapeamento oficial com um mapeamento probabilístico da infestação por Aedes spp. nos municípios do Rio Grande do Sul, Brasil. Métodos: Estudo ecológico com dados de amostras de criadouros em 2016-2017; obteve-se a classificação oficial em boletins epidemiológicos e estimou-se a probabilidade de infestação por município e semana, ajustando-se um modelo dinâmico de ocupação de sítios aos dados da vigilância epidemiológica municipal. Resultados: 187.245 amostras coletadas em 473 municípios originaram 10.648 detecções de Aedes aegypti e 8.414 de Aedes albopictus; o mapeamento oficial concorda com o probabilístico em municípios da região noroeste e oeste do RS; os mapeamentos discordam nas regiões leste, centro, nordeste e sul, revelando municípios oficialmente não infestados com alta probabilidade de infestação e notificação de arboviroses. Conclusão: A classificação oficial identificou infestação nos municípios infestados do noroeste e oeste; e não identificou infestação em municípios com possíveis falsos zeros e onde ela varia temporalmente.SciELO PreprintsSciELO PreprintsSciELO Preprints2021-01-07info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/163710.1590/S1679-49742021000200006porhttps://preprints.scielo.org/index.php/scielo/article/view/1637/2603Copyright (c) 2021 André Luís Luza, Carolina Brandt Gualdi, Lúcia Maria Lopes de Almeida Guedes Diefenbach, Lavinia Schüler-Faccini, Gonçalo Ferrazhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessLuza, André Luís Gualdi, Carolina Brandt Diefenbach, Lúcia Maria Lopes de Almeida Guedes Schüler-Faccini, Lavinia Ferraz, Gonçalo reponame:SciELO Preprintsinstname:SciELOinstacron:SCI2020-12-18T18:42:26Zoai:ops.preprints.scielo.org:preprint/1637Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2020-12-18T18:42:26SciELO Preprints - SciELOfalse |
dc.title.none.fl_str_mv |
Dynamic mapping of the probability of infestation by arbovirus urban vectors in the municipalities of Rio Grande do Sul state, Brazil, 2016-2017 Mapeo dinámico de la probabilidad de infestación por vectores urbanos de arbovirus en los municipios de Rio Grande do Sul, Brasil, 2016-2017 Mapeamento dinâmico da probabilidade de infestação por vetores urbanos de arbovírus nos municípios do Rio Grande do Sul, 2016-2017 |
title |
Dynamic mapping of the probability of infestation by arbovirus urban vectors in the municipalities of Rio Grande do Sul state, Brazil, 2016-2017 |
spellingShingle |
Dynamic mapping of the probability of infestation by arbovirus urban vectors in the municipalities of Rio Grande do Sul state, Brazil, 2016-2017 Luza, André Luís Aedes Estudos Ecológicos Modelos Teóricos Vetores de Doenças Vigilância Epidemiológica Aedes Disease Vectors Ecological Studies Epidemiological Surveillance Theoretical Models |
title_short |
Dynamic mapping of the probability of infestation by arbovirus urban vectors in the municipalities of Rio Grande do Sul state, Brazil, 2016-2017 |
title_full |
Dynamic mapping of the probability of infestation by arbovirus urban vectors in the municipalities of Rio Grande do Sul state, Brazil, 2016-2017 |
title_fullStr |
Dynamic mapping of the probability of infestation by arbovirus urban vectors in the municipalities of Rio Grande do Sul state, Brazil, 2016-2017 |
title_full_unstemmed |
Dynamic mapping of the probability of infestation by arbovirus urban vectors in the municipalities of Rio Grande do Sul state, Brazil, 2016-2017 |
title_sort |
Dynamic mapping of the probability of infestation by arbovirus urban vectors in the municipalities of Rio Grande do Sul state, Brazil, 2016-2017 |
author |
Luza, André Luís |
author_facet |
Luza, André Luís Gualdi, Carolina Brandt Diefenbach, Lúcia Maria Lopes de Almeida Guedes Schüler-Faccini, Lavinia Ferraz, Gonçalo |
author_role |
author |
author2 |
Gualdi, Carolina Brandt Diefenbach, Lúcia Maria Lopes de Almeida Guedes Schüler-Faccini, Lavinia Ferraz, Gonçalo |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Luza, André Luís Gualdi, Carolina Brandt Diefenbach, Lúcia Maria Lopes de Almeida Guedes Schüler-Faccini, Lavinia Ferraz, Gonçalo |
dc.subject.por.fl_str_mv |
Aedes Estudos Ecológicos Modelos Teóricos Vetores de Doenças Vigilância Epidemiológica Aedes Disease Vectors Ecological Studies Epidemiological Surveillance Theoretical Models |
topic |
Aedes Estudos Ecológicos Modelos Teóricos Vetores de Doenças Vigilância Epidemiológica Aedes Disease Vectors Ecological Studies Epidemiological Surveillance Theoretical Models |
description |
Objective: To compare the official mapping with the probabilistic mapping of infestation by Aedes spp. in Rio Grande do Sul municipalities, Brazil. Methods: Ecological study analyzing samples of mosquito breeding sites collected in 2016-2017; official classification was obtained from epidemiological reports, and infestation per municipality and week was estimated by fitting a dynamic site-occupancy model to data from municipal epidemiological surveillance. Results: 187,245 samples collected in 473 municipalities returned 10,648 detections of Aedes aegypti, and 8,414 detections of Aedes albopictus.; official mapping agrees with the probabilistic mapping in municipalities from northwestern and western regions. These mappings disagree in eastern, center, northeastern and southern regions, revealing municipalities not officially infested with high infestation probability and notification of arbovirus. Conclusion: While official classification correctly identifies critically infested municipalities from northwestern and western regions, it did not identify infestation in municipalities with false negative errors and where infestation varies over time. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-07 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/1637 10.1590/S1679-49742021000200006 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/1637 |
identifier_str_mv |
10.1590/S1679-49742021000200006 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/1637/2603 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:SciELO instacron:SCI |
instname_str |
SciELO |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - SciELO |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047821449297920 |