SPECIES DISTRIBUTION MODELING IN FOREST PLANNING OF ANNUAL PRODUCTION UNITS IN THE SOUTHWEST AMAZONIA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Árvore (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622021000100231 |
Resumo: | ABSTRACT The generally limited resources for forest management and the growing need of forest production regulation requires the optimization of planning approaches for the spatialization of annual production units (APU). An APU planning methodology for forest species of high wood value (Amburana acreana (Ducke) ACSm., Apuleia leiocarpa (Vogel) JF Macbr. and Castilla ulei Warb.) in management area was proposed, using prediction of potential distribution of these species with data from the occurrence of a census forest inventory. It was used sample inventory data simulated in three sampling systems (random, conglomerate systematic, and systematic) and sample intensities (0.5% and 0.8%). As predictive variables, it was used the altitude, vertical distance to the nearest drain, individual bands of the TM sensor on board the Landsat 5, and vegetation index by normalized difference. Eighteen models were obtained, six per species. The test area under the curve (AUC) of the models ranged from 0.517 to 0.804. For all species, the best predictive model was considered the conglomerate system with a sample intensity of 0.8%. Altitude was the predictor variable that most contributed to the models. The AUC values for the Amburana acreana models were significantly different from Apuleia leiocarpa and Castilla ulei (p = 0.0138). For species of lower density, it is recommended greater sampling intensity and sampling systems that provide better spatialization of occurrence records. The use of data from sampling forest inventories in different sampling systems is capable of predicting environmental suitability for forest species and helps to define APUs. Thus, it is possible to strenghten the exploration strategies and management planning of management areas and to contribute to the perpetuation of the activity in the unequal forests of the Amazon region. |
id |
SIF-1_4acbaa353754284271ce5c8d23c065ea |
---|---|
oai_identifier_str |
oai:scielo:S0100-67622021000100231 |
network_acronym_str |
SIF-1 |
network_name_str |
Revista Árvore (Online) |
repository_id_str |
|
spelling |
SPECIES DISTRIBUTION MODELING IN FOREST PLANNING OF ANNUAL PRODUCTION UNITS IN THE SOUTHWEST AMAZONIAGeotechnologyMaxentForest planningABSTRACT The generally limited resources for forest management and the growing need of forest production regulation requires the optimization of planning approaches for the spatialization of annual production units (APU). An APU planning methodology for forest species of high wood value (Amburana acreana (Ducke) ACSm., Apuleia leiocarpa (Vogel) JF Macbr. and Castilla ulei Warb.) in management area was proposed, using prediction of potential distribution of these species with data from the occurrence of a census forest inventory. It was used sample inventory data simulated in three sampling systems (random, conglomerate systematic, and systematic) and sample intensities (0.5% and 0.8%). As predictive variables, it was used the altitude, vertical distance to the nearest drain, individual bands of the TM sensor on board the Landsat 5, and vegetation index by normalized difference. Eighteen models were obtained, six per species. The test area under the curve (AUC) of the models ranged from 0.517 to 0.804. For all species, the best predictive model was considered the conglomerate system with a sample intensity of 0.8%. Altitude was the predictor variable that most contributed to the models. The AUC values for the Amburana acreana models were significantly different from Apuleia leiocarpa and Castilla ulei (p = 0.0138). For species of lower density, it is recommended greater sampling intensity and sampling systems that provide better spatialization of occurrence records. The use of data from sampling forest inventories in different sampling systems is capable of predicting environmental suitability for forest species and helps to define APUs. Thus, it is possible to strenghten the exploration strategies and management planning of management areas and to contribute to the perpetuation of the activity in the unequal forests of the Amazon region.Sociedade de Investigações Florestais2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622021000100231Revista Árvore v.45 2021reponame:Revista Árvore (Online)instname:Universidade Federal de Viçosa (UFV)instacron:SIF10.1590/1806-908820210000031info:eu-repo/semantics/openAccessMenezes,Alexandra Bezerra deFigueiredo,Symone Maria de Meloeng2021-08-27T00:00:00Zoai:scielo:S0100-67622021000100231Revistahttp://www.scielo.br/revistas/rarv/iaboutj.htmPUBhttps://old.scielo.br/oai/scielo-oai.php||r.arvore@ufv.br1806-90880100-6762opendoar:2021-08-27T00:00Revista Árvore (Online) - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
SPECIES DISTRIBUTION MODELING IN FOREST PLANNING OF ANNUAL PRODUCTION UNITS IN THE SOUTHWEST AMAZONIA |
title |
SPECIES DISTRIBUTION MODELING IN FOREST PLANNING OF ANNUAL PRODUCTION UNITS IN THE SOUTHWEST AMAZONIA |
spellingShingle |
SPECIES DISTRIBUTION MODELING IN FOREST PLANNING OF ANNUAL PRODUCTION UNITS IN THE SOUTHWEST AMAZONIA Menezes,Alexandra Bezerra de Geotechnology Maxent Forest planning |
title_short |
SPECIES DISTRIBUTION MODELING IN FOREST PLANNING OF ANNUAL PRODUCTION UNITS IN THE SOUTHWEST AMAZONIA |
title_full |
SPECIES DISTRIBUTION MODELING IN FOREST PLANNING OF ANNUAL PRODUCTION UNITS IN THE SOUTHWEST AMAZONIA |
title_fullStr |
SPECIES DISTRIBUTION MODELING IN FOREST PLANNING OF ANNUAL PRODUCTION UNITS IN THE SOUTHWEST AMAZONIA |
title_full_unstemmed |
SPECIES DISTRIBUTION MODELING IN FOREST PLANNING OF ANNUAL PRODUCTION UNITS IN THE SOUTHWEST AMAZONIA |
title_sort |
SPECIES DISTRIBUTION MODELING IN FOREST PLANNING OF ANNUAL PRODUCTION UNITS IN THE SOUTHWEST AMAZONIA |
author |
Menezes,Alexandra Bezerra de |
author_facet |
Menezes,Alexandra Bezerra de Figueiredo,Symone Maria de Melo |
author_role |
author |
author2 |
Figueiredo,Symone Maria de Melo |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Menezes,Alexandra Bezerra de Figueiredo,Symone Maria de Melo |
dc.subject.por.fl_str_mv |
Geotechnology Maxent Forest planning |
topic |
Geotechnology Maxent Forest planning |
description |
ABSTRACT The generally limited resources for forest management and the growing need of forest production regulation requires the optimization of planning approaches for the spatialization of annual production units (APU). An APU planning methodology for forest species of high wood value (Amburana acreana (Ducke) ACSm., Apuleia leiocarpa (Vogel) JF Macbr. and Castilla ulei Warb.) in management area was proposed, using prediction of potential distribution of these species with data from the occurrence of a census forest inventory. It was used sample inventory data simulated in three sampling systems (random, conglomerate systematic, and systematic) and sample intensities (0.5% and 0.8%). As predictive variables, it was used the altitude, vertical distance to the nearest drain, individual bands of the TM sensor on board the Landsat 5, and vegetation index by normalized difference. Eighteen models were obtained, six per species. The test area under the curve (AUC) of the models ranged from 0.517 to 0.804. For all species, the best predictive model was considered the conglomerate system with a sample intensity of 0.8%. Altitude was the predictor variable that most contributed to the models. The AUC values for the Amburana acreana models were significantly different from Apuleia leiocarpa and Castilla ulei (p = 0.0138). For species of lower density, it is recommended greater sampling intensity and sampling systems that provide better spatialization of occurrence records. The use of data from sampling forest inventories in different sampling systems is capable of predicting environmental suitability for forest species and helps to define APUs. Thus, it is possible to strenghten the exploration strategies and management planning of management areas and to contribute to the perpetuation of the activity in the unequal forests of the Amazon region. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622021000100231 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622021000100231 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1806-908820210000031 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade de Investigações Florestais |
publisher.none.fl_str_mv |
Sociedade de Investigações Florestais |
dc.source.none.fl_str_mv |
Revista Árvore v.45 2021 reponame:Revista Árvore (Online) instname:Universidade Federal de Viçosa (UFV) instacron:SIF |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
SIF |
institution |
SIF |
reponame_str |
Revista Árvore (Online) |
collection |
Revista Árvore (Online) |
repository.name.fl_str_mv |
Revista Árvore (Online) - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
||r.arvore@ufv.br |
_version_ |
1750318003547799552 |