RESTAURANT RESERVATION MANAGEMENT CONSIDERING TABLE COMBINATION
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382018000100073 |
Resumo: | ABSTRACT This paper presents a case study of table reservation practice for restaurant business within Walt Disney World. A unique feature here is to consider table combination to capture revenue potentials from different party sizes and at different time periods. For example, a party of large size can be served by combining two or more small tables. A mixed integer programming (MIP) model is developed to make the reservation recommendation. We propose a rolling horizon reservation policy such that the value of a particular table is periodically evaluated and updated. This is a typical revenue management method in the airlines and other industries, the essence of which is to compare the future expected revenue with a currently offered price. Using historical data, numerical test shows a significant revenue improvement potential from our proposed model. |
id |
SOBRAPO-1_0d56425820703008aef891116ab25be7 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382018000100073 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
RESTAURANT RESERVATION MANAGEMENT CONSIDERING TABLE COMBINATIONRestaurant Revenue ManagementTable Reservation OptimizationLinear ProgrammingABSTRACT This paper presents a case study of table reservation practice for restaurant business within Walt Disney World. A unique feature here is to consider table combination to capture revenue potentials from different party sizes and at different time periods. For example, a party of large size can be served by combining two or more small tables. A mixed integer programming (MIP) model is developed to make the reservation recommendation. We propose a rolling horizon reservation policy such that the value of a particular table is periodically evaluated and updated. This is a typical revenue management method in the airlines and other industries, the essence of which is to compare the future expected revenue with a currently offered price. Using historical data, numerical test shows a significant revenue improvement potential from our proposed model.Sociedade Brasileira de Pesquisa Operacional2018-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382018000100073Pesquisa Operacional v.38 n.1 2018reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2018.038.01.0073info:eu-repo/semantics/openAccessMiao,QingLi,YihuaWang,Xiubin B.eng2018-04-13T00:00:00Zoai:scielo:S0101-74382018000100073Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2018-04-13T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
RESTAURANT RESERVATION MANAGEMENT CONSIDERING TABLE COMBINATION |
title |
RESTAURANT RESERVATION MANAGEMENT CONSIDERING TABLE COMBINATION |
spellingShingle |
RESTAURANT RESERVATION MANAGEMENT CONSIDERING TABLE COMBINATION Miao,Qing Restaurant Revenue Management Table Reservation Optimization Linear Programming |
title_short |
RESTAURANT RESERVATION MANAGEMENT CONSIDERING TABLE COMBINATION |
title_full |
RESTAURANT RESERVATION MANAGEMENT CONSIDERING TABLE COMBINATION |
title_fullStr |
RESTAURANT RESERVATION MANAGEMENT CONSIDERING TABLE COMBINATION |
title_full_unstemmed |
RESTAURANT RESERVATION MANAGEMENT CONSIDERING TABLE COMBINATION |
title_sort |
RESTAURANT RESERVATION MANAGEMENT CONSIDERING TABLE COMBINATION |
author |
Miao,Qing |
author_facet |
Miao,Qing Li,Yihua Wang,Xiubin B. |
author_role |
author |
author2 |
Li,Yihua Wang,Xiubin B. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Miao,Qing Li,Yihua Wang,Xiubin B. |
dc.subject.por.fl_str_mv |
Restaurant Revenue Management Table Reservation Optimization Linear Programming |
topic |
Restaurant Revenue Management Table Reservation Optimization Linear Programming |
description |
ABSTRACT This paper presents a case study of table reservation practice for restaurant business within Walt Disney World. A unique feature here is to consider table combination to capture revenue potentials from different party sizes and at different time periods. For example, a party of large size can be served by combining two or more small tables. A mixed integer programming (MIP) model is developed to make the reservation recommendation. We propose a rolling horizon reservation policy such that the value of a particular table is periodically evaluated and updated. This is a typical revenue management method in the airlines and other industries, the essence of which is to compare the future expected revenue with a currently offered price. Using historical data, numerical test shows a significant revenue improvement potential from our proposed model. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382018000100073 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382018000100073 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0101-7438.2018.038.01.0073 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.38 n.1 2018 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318018181726208 |