IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM

Detalhes bibliográficos
Autor(a) principal: Beojone,Caio Vitor
Data de Publicação: 2020
Outros Autores: Souza,Regiane Máximo de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382020000100201
Resumo: ABSTRACT We improve the shift-scheduling process by using nonstationary queueing models to evaluate schedules and two heuristics to generate schedules. Firstly, we improved the fitness function and the initial population generation method for a benchmark genetic algorithm in the literature. We also proposed a simple local search heuristic. The improved genetic algorithm found solutions that obey the delay probability constraint more often. The proposed local search heuristic also finds feasible solutions with a much lower computational expense, especially under low arrival rates. Differently from a genetic algorithm, the local search heuristic does not rely on random choices. Furthermore, it finds one final solution from one initial solution, rather than from a population of solutions. The developed local search heuristic works with only one well-defined goal, making it simple and straightforward to implement. Nevertheless, the code for the heuristic is simple enough to accept changes and cope with multiple objectives.
id SOBRAPO-1_13b8d3d9686e2b77e83eaf5f3c9aa0d8
oai_identifier_str oai:scielo:S0101-74382020000100201
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHMnonstationary queuesgenetic algorithmlocal search heuristicABSTRACT We improve the shift-scheduling process by using nonstationary queueing models to evaluate schedules and two heuristics to generate schedules. Firstly, we improved the fitness function and the initial population generation method for a benchmark genetic algorithm in the literature. We also proposed a simple local search heuristic. The improved genetic algorithm found solutions that obey the delay probability constraint more often. The proposed local search heuristic also finds feasible solutions with a much lower computational expense, especially under low arrival rates. Differently from a genetic algorithm, the local search heuristic does not rely on random choices. Furthermore, it finds one final solution from one initial solution, rather than from a population of solutions. The developed local search heuristic works with only one well-defined goal, making it simple and straightforward to implement. Nevertheless, the code for the heuristic is simple enough to accept changes and cope with multiple objectives.Sociedade Brasileira de Pesquisa Operacional2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382020000100201Pesquisa Operacional v.40 2020reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2020.040.00220764info:eu-repo/semantics/openAccessBeojone,Caio VitorSouza,Regiane Máximo deeng2020-05-13T00:00:00Zoai:scielo:S0101-74382020000100201Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2020-05-13T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM
title IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM
spellingShingle IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM
Beojone,Caio Vitor
nonstationary queues
genetic algorithm
local search heuristic
title_short IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM
title_full IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM
title_fullStr IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM
title_full_unstemmed IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM
title_sort IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM
author Beojone,Caio Vitor
author_facet Beojone,Caio Vitor
Souza,Regiane Máximo de
author_role author
author2 Souza,Regiane Máximo de
author2_role author
dc.contributor.author.fl_str_mv Beojone,Caio Vitor
Souza,Regiane Máximo de
dc.subject.por.fl_str_mv nonstationary queues
genetic algorithm
local search heuristic
topic nonstationary queues
genetic algorithm
local search heuristic
description ABSTRACT We improve the shift-scheduling process by using nonstationary queueing models to evaluate schedules and two heuristics to generate schedules. Firstly, we improved the fitness function and the initial population generation method for a benchmark genetic algorithm in the literature. We also proposed a simple local search heuristic. The improved genetic algorithm found solutions that obey the delay probability constraint more often. The proposed local search heuristic also finds feasible solutions with a much lower computational expense, especially under low arrival rates. Differently from a genetic algorithm, the local search heuristic does not rely on random choices. Furthermore, it finds one final solution from one initial solution, rather than from a population of solutions. The developed local search heuristic works with only one well-defined goal, making it simple and straightforward to implement. Nevertheless, the code for the heuristic is simple enough to accept changes and cope with multiple objectives.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382020000100201
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382020000100201
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0101-7438.2020.040.00220764
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.40 2020
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318018436530176