IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382020000100201 |
Resumo: | ABSTRACT We improve the shift-scheduling process by using nonstationary queueing models to evaluate schedules and two heuristics to generate schedules. Firstly, we improved the fitness function and the initial population generation method for a benchmark genetic algorithm in the literature. We also proposed a simple local search heuristic. The improved genetic algorithm found solutions that obey the delay probability constraint more often. The proposed local search heuristic also finds feasible solutions with a much lower computational expense, especially under low arrival rates. Differently from a genetic algorithm, the local search heuristic does not rely on random choices. Furthermore, it finds one final solution from one initial solution, rather than from a population of solutions. The developed local search heuristic works with only one well-defined goal, making it simple and straightforward to implement. Nevertheless, the code for the heuristic is simple enough to accept changes and cope with multiple objectives. |
id |
SOBRAPO-1_13b8d3d9686e2b77e83eaf5f3c9aa0d8 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382020000100201 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHMnonstationary queuesgenetic algorithmlocal search heuristicABSTRACT We improve the shift-scheduling process by using nonstationary queueing models to evaluate schedules and two heuristics to generate schedules. Firstly, we improved the fitness function and the initial population generation method for a benchmark genetic algorithm in the literature. We also proposed a simple local search heuristic. The improved genetic algorithm found solutions that obey the delay probability constraint more often. The proposed local search heuristic also finds feasible solutions with a much lower computational expense, especially under low arrival rates. Differently from a genetic algorithm, the local search heuristic does not rely on random choices. Furthermore, it finds one final solution from one initial solution, rather than from a population of solutions. The developed local search heuristic works with only one well-defined goal, making it simple and straightforward to implement. Nevertheless, the code for the heuristic is simple enough to accept changes and cope with multiple objectives.Sociedade Brasileira de Pesquisa Operacional2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382020000100201Pesquisa Operacional v.40 2020reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2020.040.00220764info:eu-repo/semantics/openAccessBeojone,Caio VitorSouza,Regiane Máximo deeng2020-05-13T00:00:00Zoai:scielo:S0101-74382020000100201Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2020-05-13T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM |
title |
IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM |
spellingShingle |
IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM Beojone,Caio Vitor nonstationary queues genetic algorithm local search heuristic |
title_short |
IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM |
title_full |
IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM |
title_fullStr |
IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM |
title_full_unstemmed |
IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM |
title_sort |
IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS WITH LOCAL HEURISTIC AND GENETIC ALGORITHM |
author |
Beojone,Caio Vitor |
author_facet |
Beojone,Caio Vitor Souza,Regiane Máximo de |
author_role |
author |
author2 |
Souza,Regiane Máximo de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Beojone,Caio Vitor Souza,Regiane Máximo de |
dc.subject.por.fl_str_mv |
nonstationary queues genetic algorithm local search heuristic |
topic |
nonstationary queues genetic algorithm local search heuristic |
description |
ABSTRACT We improve the shift-scheduling process by using nonstationary queueing models to evaluate schedules and two heuristics to generate schedules. Firstly, we improved the fitness function and the initial population generation method for a benchmark genetic algorithm in the literature. We also proposed a simple local search heuristic. The improved genetic algorithm found solutions that obey the delay probability constraint more often. The proposed local search heuristic also finds feasible solutions with a much lower computational expense, especially under low arrival rates. Differently from a genetic algorithm, the local search heuristic does not rely on random choices. Furthermore, it finds one final solution from one initial solution, rather than from a population of solutions. The developed local search heuristic works with only one well-defined goal, making it simple and straightforward to implement. Nevertheless, the code for the heuristic is simple enough to accept changes and cope with multiple objectives. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382020000100201 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382020000100201 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0101-7438.2020.040.00220764 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.40 2020 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318018436530176 |