THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION

Detalhes bibliográficos
Autor(a) principal: Menezes,André Felipe Berdusco
Data de Publicação: 2018
Outros Autores: Mazucheli,Josmar, Dey,Sanku
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382018000300555
Resumo: ABSTRACT This paper addresses the different methods of estimation of the unknown parameters of a two-parameter unit-logistic distribution from the frequentist point of view. We briefly describe different approaches, namely, maximum likelihood estimators, percentile based estimators, least squares estimators, maximum product of spacings estimators, methods of minimum distances: Cramér-von Mises, AndersonDarling and four variants of Anderson-Darling. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation for both small and large samples. The performances of the estimators have been compared in terms of their relative bias, root mean squared error, average absolute difference between the theoretical and empirical estimate of the distribution functions and the maximum absolute difference between the theoretical and empirical distribution functions using simulated samples. Also, for each method of estimation, we consider the interval estimation using the Bootstrap confidence interval and calculate the coverage probability and the average width of the Bootstrap confidence intervals. Finally, two real data sets have been analyzed for illustrative purposes.
id SOBRAPO-1_13cf84942ae020512ea98450fec8c06f
oai_identifier_str oai:scielo:S0101-74382018000300555
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATIONUnit-Logistic distributionMonte Carlo simulationsestimation methodsparametric BootstrapABSTRACT This paper addresses the different methods of estimation of the unknown parameters of a two-parameter unit-logistic distribution from the frequentist point of view. We briefly describe different approaches, namely, maximum likelihood estimators, percentile based estimators, least squares estimators, maximum product of spacings estimators, methods of minimum distances: Cramér-von Mises, AndersonDarling and four variants of Anderson-Darling. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation for both small and large samples. The performances of the estimators have been compared in terms of their relative bias, root mean squared error, average absolute difference between the theoretical and empirical estimate of the distribution functions and the maximum absolute difference between the theoretical and empirical distribution functions using simulated samples. Also, for each method of estimation, we consider the interval estimation using the Bootstrap confidence interval and calculate the coverage probability and the average width of the Bootstrap confidence intervals. Finally, two real data sets have been analyzed for illustrative purposes.Sociedade Brasileira de Pesquisa Operacional2018-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382018000300555Pesquisa Operacional v.38 n.3 2018reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2018.038.03.0555info:eu-repo/semantics/openAccessMenezes,André Felipe BerduscoMazucheli,JosmarDey,Sankueng2019-01-22T00:00:00Zoai:scielo:S0101-74382018000300555Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2019-01-22T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION
title THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION
spellingShingle THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION
Menezes,André Felipe Berdusco
Unit-Logistic distribution
Monte Carlo simulations
estimation methods
parametric Bootstrap
title_short THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION
title_full THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION
title_fullStr THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION
title_full_unstemmed THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION
title_sort THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION
author Menezes,André Felipe Berdusco
author_facet Menezes,André Felipe Berdusco
Mazucheli,Josmar
Dey,Sanku
author_role author
author2 Mazucheli,Josmar
Dey,Sanku
author2_role author
author
dc.contributor.author.fl_str_mv Menezes,André Felipe Berdusco
Mazucheli,Josmar
Dey,Sanku
dc.subject.por.fl_str_mv Unit-Logistic distribution
Monte Carlo simulations
estimation methods
parametric Bootstrap
topic Unit-Logistic distribution
Monte Carlo simulations
estimation methods
parametric Bootstrap
description ABSTRACT This paper addresses the different methods of estimation of the unknown parameters of a two-parameter unit-logistic distribution from the frequentist point of view. We briefly describe different approaches, namely, maximum likelihood estimators, percentile based estimators, least squares estimators, maximum product of spacings estimators, methods of minimum distances: Cramér-von Mises, AndersonDarling and four variants of Anderson-Darling. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation for both small and large samples. The performances of the estimators have been compared in terms of their relative bias, root mean squared error, average absolute difference between the theoretical and empirical estimate of the distribution functions and the maximum absolute difference between the theoretical and empirical distribution functions using simulated samples. Also, for each method of estimation, we consider the interval estimation using the Bootstrap confidence interval and calculate the coverage probability and the average width of the Bootstrap confidence intervals. Finally, two real data sets have been analyzed for illustrative purposes.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382018000300555
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382018000300555
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0101-7438.2018.038.03.0555
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.38 n.3 2018
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318018225766400