THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382018000300555 |
Resumo: | ABSTRACT This paper addresses the different methods of estimation of the unknown parameters of a two-parameter unit-logistic distribution from the frequentist point of view. We briefly describe different approaches, namely, maximum likelihood estimators, percentile based estimators, least squares estimators, maximum product of spacings estimators, methods of minimum distances: Cramér-von Mises, AndersonDarling and four variants of Anderson-Darling. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation for both small and large samples. The performances of the estimators have been compared in terms of their relative bias, root mean squared error, average absolute difference between the theoretical and empirical estimate of the distribution functions and the maximum absolute difference between the theoretical and empirical distribution functions using simulated samples. Also, for each method of estimation, we consider the interval estimation using the Bootstrap confidence interval and calculate the coverage probability and the average width of the Bootstrap confidence intervals. Finally, two real data sets have been analyzed for illustrative purposes. |
id |
SOBRAPO-1_13cf84942ae020512ea98450fec8c06f |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382018000300555 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATIONUnit-Logistic distributionMonte Carlo simulationsestimation methodsparametric BootstrapABSTRACT This paper addresses the different methods of estimation of the unknown parameters of a two-parameter unit-logistic distribution from the frequentist point of view. We briefly describe different approaches, namely, maximum likelihood estimators, percentile based estimators, least squares estimators, maximum product of spacings estimators, methods of minimum distances: Cramér-von Mises, AndersonDarling and four variants of Anderson-Darling. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation for both small and large samples. The performances of the estimators have been compared in terms of their relative bias, root mean squared error, average absolute difference between the theoretical and empirical estimate of the distribution functions and the maximum absolute difference between the theoretical and empirical distribution functions using simulated samples. Also, for each method of estimation, we consider the interval estimation using the Bootstrap confidence interval and calculate the coverage probability and the average width of the Bootstrap confidence intervals. Finally, two real data sets have been analyzed for illustrative purposes.Sociedade Brasileira de Pesquisa Operacional2018-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382018000300555Pesquisa Operacional v.38 n.3 2018reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2018.038.03.0555info:eu-repo/semantics/openAccessMenezes,André Felipe BerduscoMazucheli,JosmarDey,Sankueng2019-01-22T00:00:00Zoai:scielo:S0101-74382018000300555Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2019-01-22T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION |
title |
THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION |
spellingShingle |
THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION Menezes,André Felipe Berdusco Unit-Logistic distribution Monte Carlo simulations estimation methods parametric Bootstrap |
title_short |
THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION |
title_full |
THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION |
title_fullStr |
THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION |
title_full_unstemmed |
THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION |
title_sort |
THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION |
author |
Menezes,André Felipe Berdusco |
author_facet |
Menezes,André Felipe Berdusco Mazucheli,Josmar Dey,Sanku |
author_role |
author |
author2 |
Mazucheli,Josmar Dey,Sanku |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Menezes,André Felipe Berdusco Mazucheli,Josmar Dey,Sanku |
dc.subject.por.fl_str_mv |
Unit-Logistic distribution Monte Carlo simulations estimation methods parametric Bootstrap |
topic |
Unit-Logistic distribution Monte Carlo simulations estimation methods parametric Bootstrap |
description |
ABSTRACT This paper addresses the different methods of estimation of the unknown parameters of a two-parameter unit-logistic distribution from the frequentist point of view. We briefly describe different approaches, namely, maximum likelihood estimators, percentile based estimators, least squares estimators, maximum product of spacings estimators, methods of minimum distances: Cramér-von Mises, AndersonDarling and four variants of Anderson-Darling. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation for both small and large samples. The performances of the estimators have been compared in terms of their relative bias, root mean squared error, average absolute difference between the theoretical and empirical estimate of the distribution functions and the maximum absolute difference between the theoretical and empirical distribution functions using simulated samples. Also, for each method of estimation, we consider the interval estimation using the Bootstrap confidence interval and calculate the coverage probability and the average width of the Bootstrap confidence intervals. Finally, two real data sets have been analyzed for illustrative purposes. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382018000300555 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382018000300555 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0101-7438.2018.038.03.0555 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.38 n.3 2018 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318018225766400 |