A note on the NP-hardness of the separation problem on some valid inequalities for the elementary shortest path problem

Detalhes bibliográficos
Autor(a) principal: Ibrahim,M.S.
Data de Publicação: 2014
Outros Autores: Maculan,N., Minoux,M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382014000100009
Resumo: In this paper, we investigate the separation problem on some valid inequalities for the s - t elementary shortest path problem in digraphs containing negative directed cycles. As we will see, these inequalities depend to a given parameter k ∈ ℕ. To show the NP-hardness of the separation problem of these valid inequalities, considering the parameter k ∈ ℕ, we establish a polynomial reduction from the problem of the existence of k + 2 vertex-disjoint paths between k + 2 pairs of vertices (s1, t1), (s2, t2) ... (sk+2, t k+2) in a digraph to the decision problem associated to the separation of these valid inequalities. Through some illustrative instances, we exhibit the evoked polynomial reduction in the cases k = 0 and k = 1.
id SOBRAPO-1_1534319d3e221c3f3debc528f7ac2b59
oai_identifier_str oai:scielo:S0101-74382014000100009
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling A note on the NP-hardness of the separation problem on some valid inequalities for the elementary shortest path problempolytopedigraphsshortest pathvalid inequalityseparationIn this paper, we investigate the separation problem on some valid inequalities for the s - t elementary shortest path problem in digraphs containing negative directed cycles. As we will see, these inequalities depend to a given parameter k ∈ ℕ. To show the NP-hardness of the separation problem of these valid inequalities, considering the parameter k ∈ ℕ, we establish a polynomial reduction from the problem of the existence of k + 2 vertex-disjoint paths between k + 2 pairs of vertices (s1, t1), (s2, t2) ... (sk+2, t k+2) in a digraph to the decision problem associated to the separation of these valid inequalities. Through some illustrative instances, we exhibit the evoked polynomial reduction in the cases k = 0 and k = 1.Sociedade Brasileira de Pesquisa Operacional2014-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382014000100009Pesquisa Operacional v.34 n.1 2014reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382014000100009info:eu-repo/semantics/openAccessIbrahim,M.S.Maculan,N.Minoux,M.eng2014-05-08T00:00:00Zoai:scielo:S0101-74382014000100009Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2014-05-08T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv A note on the NP-hardness of the separation problem on some valid inequalities for the elementary shortest path problem
title A note on the NP-hardness of the separation problem on some valid inequalities for the elementary shortest path problem
spellingShingle A note on the NP-hardness of the separation problem on some valid inequalities for the elementary shortest path problem
Ibrahim,M.S.
polytope
digraphs
shortest path
valid inequality
separation
title_short A note on the NP-hardness of the separation problem on some valid inequalities for the elementary shortest path problem
title_full A note on the NP-hardness of the separation problem on some valid inequalities for the elementary shortest path problem
title_fullStr A note on the NP-hardness of the separation problem on some valid inequalities for the elementary shortest path problem
title_full_unstemmed A note on the NP-hardness of the separation problem on some valid inequalities for the elementary shortest path problem
title_sort A note on the NP-hardness of the separation problem on some valid inequalities for the elementary shortest path problem
author Ibrahim,M.S.
author_facet Ibrahim,M.S.
Maculan,N.
Minoux,M.
author_role author
author2 Maculan,N.
Minoux,M.
author2_role author
author
dc.contributor.author.fl_str_mv Ibrahim,M.S.
Maculan,N.
Minoux,M.
dc.subject.por.fl_str_mv polytope
digraphs
shortest path
valid inequality
separation
topic polytope
digraphs
shortest path
valid inequality
separation
description In this paper, we investigate the separation problem on some valid inequalities for the s - t elementary shortest path problem in digraphs containing negative directed cycles. As we will see, these inequalities depend to a given parameter k ∈ ℕ. To show the NP-hardness of the separation problem of these valid inequalities, considering the parameter k ∈ ℕ, we establish a polynomial reduction from the problem of the existence of k + 2 vertex-disjoint paths between k + 2 pairs of vertices (s1, t1), (s2, t2) ... (sk+2, t k+2) in a digraph to the decision problem associated to the separation of these valid inequalities. Through some illustrative instances, we exhibit the evoked polynomial reduction in the cases k = 0 and k = 1.
publishDate 2014
dc.date.none.fl_str_mv 2014-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382014000100009
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382014000100009
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0101-74382014000100009
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.34 n.1 2014
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318017741324288