MULTI-AGENT BASED MODELING APPLIED TO PORTFOLIO SELECTION IN THE DOOM-LOOP OF SOVEREIGN DEBT CONTEXT*
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000100003 |
Resumo: | ABSTRACT This study explores the self-fulfilling dynamic between sovereign debt risk and rational choices of neutral, risk-seeking and risk-averse investors, with implications to the systemic risk emergence. The agent-based model parameterization includes investment strategy (randomly selected assets, stock exchange participation, economic segment, and technical analysis), portfolio rebalance period, and stop gain/loss option. We use Brazilian markets data from 2006 to 2017 to simulate stochastic distributions of investments by a set of 3,000 agents in both stages of model verification and validation (robustness check). Using the Capital Asset Pricing Model, we confirmed our proposition that the optimal rational risk attitude (less risk appetite) constitutes a trigger for the self-fulfilling dynamic, having its foundation on government securities yield and in the debt dynamics. This finding is contrary to the equity premium puzzle in the Brazilian case. The findings have implications to policymakers regarding systemic risk issues, among other public policies. |
id |
SOBRAPO-1_1b10928d8221706d986f9ec7af0d2bde |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382019000100003 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
MULTI-AGENT BASED MODELING APPLIED TO PORTFOLIO SELECTION IN THE DOOM-LOOP OF SOVEREIGN DEBT CONTEXT*portfolio selectionagent-based modelsovereign debtdoom-loopsystemic riskABSTRACT This study explores the self-fulfilling dynamic between sovereign debt risk and rational choices of neutral, risk-seeking and risk-averse investors, with implications to the systemic risk emergence. The agent-based model parameterization includes investment strategy (randomly selected assets, stock exchange participation, economic segment, and technical analysis), portfolio rebalance period, and stop gain/loss option. We use Brazilian markets data from 2006 to 2017 to simulate stochastic distributions of investments by a set of 3,000 agents in both stages of model verification and validation (robustness check). Using the Capital Asset Pricing Model, we confirmed our proposition that the optimal rational risk attitude (less risk appetite) constitutes a trigger for the self-fulfilling dynamic, having its foundation on government securities yield and in the debt dynamics. This finding is contrary to the equity premium puzzle in the Brazilian case. The findings have implications to policymakers regarding systemic risk issues, among other public policies.Sociedade Brasileira de Pesquisa Operacional2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000100003Pesquisa Operacional v.39 n.1 2019reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2019.039.01.0057info:eu-repo/semantics/openAccessRosa,Paulo SérgioGartner,Ivan RicardoRalha,Célia Ghedinieng2019-05-07T00:00:00Zoai:scielo:S0101-74382019000100003Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2019-05-07T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
MULTI-AGENT BASED MODELING APPLIED TO PORTFOLIO SELECTION IN THE DOOM-LOOP OF SOVEREIGN DEBT CONTEXT* |
title |
MULTI-AGENT BASED MODELING APPLIED TO PORTFOLIO SELECTION IN THE DOOM-LOOP OF SOVEREIGN DEBT CONTEXT* |
spellingShingle |
MULTI-AGENT BASED MODELING APPLIED TO PORTFOLIO SELECTION IN THE DOOM-LOOP OF SOVEREIGN DEBT CONTEXT* Rosa,Paulo Sérgio portfolio selection agent-based model sovereign debt doom-loop systemic risk |
title_short |
MULTI-AGENT BASED MODELING APPLIED TO PORTFOLIO SELECTION IN THE DOOM-LOOP OF SOVEREIGN DEBT CONTEXT* |
title_full |
MULTI-AGENT BASED MODELING APPLIED TO PORTFOLIO SELECTION IN THE DOOM-LOOP OF SOVEREIGN DEBT CONTEXT* |
title_fullStr |
MULTI-AGENT BASED MODELING APPLIED TO PORTFOLIO SELECTION IN THE DOOM-LOOP OF SOVEREIGN DEBT CONTEXT* |
title_full_unstemmed |
MULTI-AGENT BASED MODELING APPLIED TO PORTFOLIO SELECTION IN THE DOOM-LOOP OF SOVEREIGN DEBT CONTEXT* |
title_sort |
MULTI-AGENT BASED MODELING APPLIED TO PORTFOLIO SELECTION IN THE DOOM-LOOP OF SOVEREIGN DEBT CONTEXT* |
author |
Rosa,Paulo Sérgio |
author_facet |
Rosa,Paulo Sérgio Gartner,Ivan Ricardo Ralha,Célia Ghedini |
author_role |
author |
author2 |
Gartner,Ivan Ricardo Ralha,Célia Ghedini |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Rosa,Paulo Sérgio Gartner,Ivan Ricardo Ralha,Célia Ghedini |
dc.subject.por.fl_str_mv |
portfolio selection agent-based model sovereign debt doom-loop systemic risk |
topic |
portfolio selection agent-based model sovereign debt doom-loop systemic risk |
description |
ABSTRACT This study explores the self-fulfilling dynamic between sovereign debt risk and rational choices of neutral, risk-seeking and risk-averse investors, with implications to the systemic risk emergence. The agent-based model parameterization includes investment strategy (randomly selected assets, stock exchange participation, economic segment, and technical analysis), portfolio rebalance period, and stop gain/loss option. We use Brazilian markets data from 2006 to 2017 to simulate stochastic distributions of investments by a set of 3,000 agents in both stages of model verification and validation (robustness check). Using the Capital Asset Pricing Model, we confirmed our proposition that the optimal rational risk attitude (less risk appetite) constitutes a trigger for the self-fulfilling dynamic, having its foundation on government securities yield and in the debt dynamics. This finding is contrary to the equity premium puzzle in the Brazilian case. The findings have implications to policymakers regarding systemic risk issues, among other public policies. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000100003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000100003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0101-7438.2019.039.01.0057 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.39 n.1 2019 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318018232057856 |