DIFFERENT TYPES OF RETURN TO SCALE IN DEA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000200245 |
Resumo: | ABSTRACT The format of the efficient frontier is an important measure of technical efficiency; additionally, it determines the type of return to scale verified by the model. The classical Data Envelopment Analysis (DEA) model, CCR (Charnes et al., 1978), assumes constant returns to scale; conversely, the BCC (Banker et al., 1984) model presents a concave downward efficient frontier that presumes variable returns to scale. This study examines how different returns to scale can be revealed in DEA, considering the possibility of the existence of a concave upward efficient frontier. This kind of frontier, not yet explored by the DEA literature, can also represent viable production, seeing that an increase of the inputs causes an increase of the outputs. Considering this, a concave upward efficient frontier presents a variable return to scale, but with different characteristics from those of the concave downward BCC efficient frontier. This proposal is important because it considers the possibility of an efficient frontier that represents different samples of decision-making units (DMUs). An upward curve would better represent DMUs of smaller production scales that have increased marginal productivity but cannot act as efficiently as larger scale units. |
id |
SOBRAPO-1_218b9f8651fab87194e1a9d728749670 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382019000200245 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
DIFFERENT TYPES OF RETURN TO SCALE IN DEADEAefficient frontierreturns to scaleABSTRACT The format of the efficient frontier is an important measure of technical efficiency; additionally, it determines the type of return to scale verified by the model. The classical Data Envelopment Analysis (DEA) model, CCR (Charnes et al., 1978), assumes constant returns to scale; conversely, the BCC (Banker et al., 1984) model presents a concave downward efficient frontier that presumes variable returns to scale. This study examines how different returns to scale can be revealed in DEA, considering the possibility of the existence of a concave upward efficient frontier. This kind of frontier, not yet explored by the DEA literature, can also represent viable production, seeing that an increase of the inputs causes an increase of the outputs. Considering this, a concave upward efficient frontier presents a variable return to scale, but with different characteristics from those of the concave downward BCC efficient frontier. This proposal is important because it considers the possibility of an efficient frontier that represents different samples of decision-making units (DMUs). An upward curve would better represent DMUs of smaller production scales that have increased marginal productivity but cannot act as efficiently as larger scale units.Sociedade Brasileira de Pesquisa Operacional2019-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000200245Pesquisa Operacional v.39 n.2 2019reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2019.039.02.0245info:eu-repo/semantics/openAccessBenicio,JulianaMello,João Carlos Soares deeng2019-09-19T00:00:00Zoai:scielo:S0101-74382019000200245Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2019-09-19T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
DIFFERENT TYPES OF RETURN TO SCALE IN DEA |
title |
DIFFERENT TYPES OF RETURN TO SCALE IN DEA |
spellingShingle |
DIFFERENT TYPES OF RETURN TO SCALE IN DEA Benicio,Juliana DEA efficient frontier returns to scale |
title_short |
DIFFERENT TYPES OF RETURN TO SCALE IN DEA |
title_full |
DIFFERENT TYPES OF RETURN TO SCALE IN DEA |
title_fullStr |
DIFFERENT TYPES OF RETURN TO SCALE IN DEA |
title_full_unstemmed |
DIFFERENT TYPES OF RETURN TO SCALE IN DEA |
title_sort |
DIFFERENT TYPES OF RETURN TO SCALE IN DEA |
author |
Benicio,Juliana |
author_facet |
Benicio,Juliana Mello,João Carlos Soares de |
author_role |
author |
author2 |
Mello,João Carlos Soares de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Benicio,Juliana Mello,João Carlos Soares de |
dc.subject.por.fl_str_mv |
DEA efficient frontier returns to scale |
topic |
DEA efficient frontier returns to scale |
description |
ABSTRACT The format of the efficient frontier is an important measure of technical efficiency; additionally, it determines the type of return to scale verified by the model. The classical Data Envelopment Analysis (DEA) model, CCR (Charnes et al., 1978), assumes constant returns to scale; conversely, the BCC (Banker et al., 1984) model presents a concave downward efficient frontier that presumes variable returns to scale. This study examines how different returns to scale can be revealed in DEA, considering the possibility of the existence of a concave upward efficient frontier. This kind of frontier, not yet explored by the DEA literature, can also represent viable production, seeing that an increase of the inputs causes an increase of the outputs. Considering this, a concave upward efficient frontier presents a variable return to scale, but with different characteristics from those of the concave downward BCC efficient frontier. This proposal is important because it considers the possibility of an efficient frontier that represents different samples of decision-making units (DMUs). An upward curve would better represent DMUs of smaller production scales that have increased marginal productivity but cannot act as efficiently as larger scale units. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000200245 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000200245 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0101-7438.2019.039.02.0245 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.39 n.2 2019 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318018249883648 |