A non-standard optimal control problem arising in an economics application
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382013000100004 |
Resumo: | A recent optimal control problem in the area of economics has mathematical properties that do not fall into the standard optimal control problem formulation. In our problem the state value at the final time the state, y(T) = z, is free and unknown, and additionally the Lagrangian integrand in the functional is a piecewise constant function of the unknown value y(T). This is not a standard optimal control problem and cannot be solved using Pontryagin's Minimum Principle with the standard boundary conditions at the final time. In the standard problem a free final state y(T) yields a necessary boundary condition p(T) = 0, where p(t) is the costate. Because the integrand is a function of y(T), the new necessary condition is that y(T) should be equal to a certain integral that is a continuous function of y(T). We introduce a continuous approximation of the piecewise constant integrand function by using a hyperbolic tangent approach and solve an example using a C++ shooting algorithm with Newton iteration for solving the Two Point Boundary Value Problem (TPBVP). The minimising free value y(T) is calculated in an outer loop iteration using the Golden Section or Brent algorithm. Comparative nonlinear programming (NP) discrete-time results are also presented. |
id |
SOBRAPO-1_46e51650059b39743f501a0c62595b02 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382013000100004 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
A non-standard optimal control problem arising in an economics applicationoptimal controlnon-standard optimal controlpiecewise constant integrandeconomicscomparative nonlinear programming resultsA recent optimal control problem in the area of economics has mathematical properties that do not fall into the standard optimal control problem formulation. In our problem the state value at the final time the state, y(T) = z, is free and unknown, and additionally the Lagrangian integrand in the functional is a piecewise constant function of the unknown value y(T). This is not a standard optimal control problem and cannot be solved using Pontryagin's Minimum Principle with the standard boundary conditions at the final time. In the standard problem a free final state y(T) yields a necessary boundary condition p(T) = 0, where p(t) is the costate. Because the integrand is a function of y(T), the new necessary condition is that y(T) should be equal to a certain integral that is a continuous function of y(T). We introduce a continuous approximation of the piecewise constant integrand function by using a hyperbolic tangent approach and solve an example using a C++ shooting algorithm with Newton iteration for solving the Two Point Boundary Value Problem (TPBVP). The minimising free value y(T) is calculated in an outer loop iteration using the Golden Section or Brent algorithm. Comparative nonlinear programming (NP) discrete-time results are also presented.Sociedade Brasileira de Pesquisa Operacional2013-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382013000100004Pesquisa Operacional v.33 n.1 2013reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382013000100004info:eu-repo/semantics/openAccessZinober,AlanSufahani,Suliadieng2013-05-24T00:00:00Zoai:scielo:S0101-74382013000100004Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2013-05-24T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
A non-standard optimal control problem arising in an economics application |
title |
A non-standard optimal control problem arising in an economics application |
spellingShingle |
A non-standard optimal control problem arising in an economics application Zinober,Alan optimal control non-standard optimal control piecewise constant integrand economics comparative nonlinear programming results |
title_short |
A non-standard optimal control problem arising in an economics application |
title_full |
A non-standard optimal control problem arising in an economics application |
title_fullStr |
A non-standard optimal control problem arising in an economics application |
title_full_unstemmed |
A non-standard optimal control problem arising in an economics application |
title_sort |
A non-standard optimal control problem arising in an economics application |
author |
Zinober,Alan |
author_facet |
Zinober,Alan Sufahani,Suliadi |
author_role |
author |
author2 |
Sufahani,Suliadi |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Zinober,Alan Sufahani,Suliadi |
dc.subject.por.fl_str_mv |
optimal control non-standard optimal control piecewise constant integrand economics comparative nonlinear programming results |
topic |
optimal control non-standard optimal control piecewise constant integrand economics comparative nonlinear programming results |
description |
A recent optimal control problem in the area of economics has mathematical properties that do not fall into the standard optimal control problem formulation. In our problem the state value at the final time the state, y(T) = z, is free and unknown, and additionally the Lagrangian integrand in the functional is a piecewise constant function of the unknown value y(T). This is not a standard optimal control problem and cannot be solved using Pontryagin's Minimum Principle with the standard boundary conditions at the final time. In the standard problem a free final state y(T) yields a necessary boundary condition p(T) = 0, where p(t) is the costate. Because the integrand is a function of y(T), the new necessary condition is that y(T) should be equal to a certain integral that is a continuous function of y(T). We introduce a continuous approximation of the piecewise constant integrand function by using a hyperbolic tangent approach and solve an example using a C++ shooting algorithm with Newton iteration for solving the Two Point Boundary Value Problem (TPBVP). The minimising free value y(T) is calculated in an outer loop iteration using the Golden Section or Brent algorithm. Comparative nonlinear programming (NP) discrete-time results are also presented. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382013000100004 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382013000100004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-74382013000100004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.33 n.1 2013 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318017435140096 |