A non-standard optimal control problem arising in an economics application

Detalhes bibliográficos
Autor(a) principal: Zinober,Alan
Data de Publicação: 2013
Outros Autores: Sufahani,Suliadi
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382013000100004
Resumo: A recent optimal control problem in the area of economics has mathematical properties that do not fall into the standard optimal control problem formulation. In our problem the state value at the final time the state, y(T) = z, is free and unknown, and additionally the Lagrangian integrand in the functional is a piecewise constant function of the unknown value y(T). This is not a standard optimal control problem and cannot be solved using Pontryagin's Minimum Principle with the standard boundary conditions at the final time. In the standard problem a free final state y(T) yields a necessary boundary condition p(T) = 0, where p(t) is the costate. Because the integrand is a function of y(T), the new necessary condition is that y(T) should be equal to a certain integral that is a continuous function of y(T). We introduce a continuous approximation of the piecewise constant integrand function by using a hyperbolic tangent approach and solve an example using a C++ shooting algorithm with Newton iteration for solving the Two Point Boundary Value Problem (TPBVP). The minimising free value y(T) is calculated in an outer loop iteration using the Golden Section or Brent algorithm. Comparative nonlinear programming (NP) discrete-time results are also presented.
id SOBRAPO-1_46e51650059b39743f501a0c62595b02
oai_identifier_str oai:scielo:S0101-74382013000100004
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling A non-standard optimal control problem arising in an economics applicationoptimal controlnon-standard optimal controlpiecewise constant integrandeconomicscomparative nonlinear programming resultsA recent optimal control problem in the area of economics has mathematical properties that do not fall into the standard optimal control problem formulation. In our problem the state value at the final time the state, y(T) = z, is free and unknown, and additionally the Lagrangian integrand in the functional is a piecewise constant function of the unknown value y(T). This is not a standard optimal control problem and cannot be solved using Pontryagin's Minimum Principle with the standard boundary conditions at the final time. In the standard problem a free final state y(T) yields a necessary boundary condition p(T) = 0, where p(t) is the costate. Because the integrand is a function of y(T), the new necessary condition is that y(T) should be equal to a certain integral that is a continuous function of y(T). We introduce a continuous approximation of the piecewise constant integrand function by using a hyperbolic tangent approach and solve an example using a C++ shooting algorithm with Newton iteration for solving the Two Point Boundary Value Problem (TPBVP). The minimising free value y(T) is calculated in an outer loop iteration using the Golden Section or Brent algorithm. Comparative nonlinear programming (NP) discrete-time results are also presented.Sociedade Brasileira de Pesquisa Operacional2013-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382013000100004Pesquisa Operacional v.33 n.1 2013reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382013000100004info:eu-repo/semantics/openAccessZinober,AlanSufahani,Suliadieng2013-05-24T00:00:00Zoai:scielo:S0101-74382013000100004Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2013-05-24T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv A non-standard optimal control problem arising in an economics application
title A non-standard optimal control problem arising in an economics application
spellingShingle A non-standard optimal control problem arising in an economics application
Zinober,Alan
optimal control
non-standard optimal control
piecewise constant integrand
economics
comparative nonlinear programming results
title_short A non-standard optimal control problem arising in an economics application
title_full A non-standard optimal control problem arising in an economics application
title_fullStr A non-standard optimal control problem arising in an economics application
title_full_unstemmed A non-standard optimal control problem arising in an economics application
title_sort A non-standard optimal control problem arising in an economics application
author Zinober,Alan
author_facet Zinober,Alan
Sufahani,Suliadi
author_role author
author2 Sufahani,Suliadi
author2_role author
dc.contributor.author.fl_str_mv Zinober,Alan
Sufahani,Suliadi
dc.subject.por.fl_str_mv optimal control
non-standard optimal control
piecewise constant integrand
economics
comparative nonlinear programming results
topic optimal control
non-standard optimal control
piecewise constant integrand
economics
comparative nonlinear programming results
description A recent optimal control problem in the area of economics has mathematical properties that do not fall into the standard optimal control problem formulation. In our problem the state value at the final time the state, y(T) = z, is free and unknown, and additionally the Lagrangian integrand in the functional is a piecewise constant function of the unknown value y(T). This is not a standard optimal control problem and cannot be solved using Pontryagin's Minimum Principle with the standard boundary conditions at the final time. In the standard problem a free final state y(T) yields a necessary boundary condition p(T) = 0, where p(t) is the costate. Because the integrand is a function of y(T), the new necessary condition is that y(T) should be equal to a certain integral that is a continuous function of y(T). We introduce a continuous approximation of the piecewise constant integrand function by using a hyperbolic tangent approach and solve an example using a C++ shooting algorithm with Newton iteration for solving the Two Point Boundary Value Problem (TPBVP). The minimising free value y(T) is calculated in an outer loop iteration using the Golden Section or Brent algorithm. Comparative nonlinear programming (NP) discrete-time results are also presented.
publishDate 2013
dc.date.none.fl_str_mv 2013-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382013000100004
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382013000100004
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0101-74382013000100004
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.33 n.1 2013
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318017435140096