ON HYPOTHESIS TESTS FOR COVARIANCE MATRICES UNDER MULTIVARIATE NORMALITY

Detalhes bibliográficos
Autor(a) principal: Pinto,Letícia Pereira
Data de Publicação: 2015
Outros Autores: Mingoti,Sueli Aparecida
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000100123
Resumo: In this paper we proposed a new statistical test for testing the covariance matrix in one population under multivariate normal assumption. In general, the proposed and the likelihood-ratio tests resulted in larger values of estimated powers than VMAX for bivariate and trivariate cases. VMAX was not sensitive to general changes in the covariance (correlation) structure. The advantage of the new test is that it is based on the comparison of all elements of the postulated covariance matrix under the null hypothesis with their respective maximum likelihood sample estimates and therefore, it does not restrict the information of the covariance matrix into a scalar number such as the determinant or trace, for example. Due to the fact that it is based on the maximum likelihood estimates and the Fisher information matrix, it can be used for data coming from distribution other than the multivariate normal.
id SOBRAPO-1_575ba98c624cd91ffdbd34c1b45c3cf4
oai_identifier_str oai:scielo:S0101-74382015000100123
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling ON HYPOTHESIS TESTS FOR COVARIANCE MATRICES UNDER MULTIVARIATE NORMALITYcovariance matrixhypothesis testingFisher information matrixIn this paper we proposed a new statistical test for testing the covariance matrix in one population under multivariate normal assumption. In general, the proposed and the likelihood-ratio tests resulted in larger values of estimated powers than VMAX for bivariate and trivariate cases. VMAX was not sensitive to general changes in the covariance (correlation) structure. The advantage of the new test is that it is based on the comparison of all elements of the postulated covariance matrix under the null hypothesis with their respective maximum likelihood sample estimates and therefore, it does not restrict the information of the covariance matrix into a scalar number such as the determinant or trace, for example. Due to the fact that it is based on the maximum likelihood estimates and the Fisher information matrix, it can be used for data coming from distribution other than the multivariate normal.Sociedade Brasileira de Pesquisa Operacional2015-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000100123Pesquisa Operacional v.35 n.1 2015reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2015.035.01.0123info:eu-repo/semantics/openAccessPinto,Letícia PereiraMingoti,Sueli Aparecidaeng2015-05-19T00:00:00Zoai:scielo:S0101-74382015000100123Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2015-05-19T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv ON HYPOTHESIS TESTS FOR COVARIANCE MATRICES UNDER MULTIVARIATE NORMALITY
title ON HYPOTHESIS TESTS FOR COVARIANCE MATRICES UNDER MULTIVARIATE NORMALITY
spellingShingle ON HYPOTHESIS TESTS FOR COVARIANCE MATRICES UNDER MULTIVARIATE NORMALITY
Pinto,Letícia Pereira
covariance matrix
hypothesis testing
Fisher information matrix
title_short ON HYPOTHESIS TESTS FOR COVARIANCE MATRICES UNDER MULTIVARIATE NORMALITY
title_full ON HYPOTHESIS TESTS FOR COVARIANCE MATRICES UNDER MULTIVARIATE NORMALITY
title_fullStr ON HYPOTHESIS TESTS FOR COVARIANCE MATRICES UNDER MULTIVARIATE NORMALITY
title_full_unstemmed ON HYPOTHESIS TESTS FOR COVARIANCE MATRICES UNDER MULTIVARIATE NORMALITY
title_sort ON HYPOTHESIS TESTS FOR COVARIANCE MATRICES UNDER MULTIVARIATE NORMALITY
author Pinto,Letícia Pereira
author_facet Pinto,Letícia Pereira
Mingoti,Sueli Aparecida
author_role author
author2 Mingoti,Sueli Aparecida
author2_role author
dc.contributor.author.fl_str_mv Pinto,Letícia Pereira
Mingoti,Sueli Aparecida
dc.subject.por.fl_str_mv covariance matrix
hypothesis testing
Fisher information matrix
topic covariance matrix
hypothesis testing
Fisher information matrix
description In this paper we proposed a new statistical test for testing the covariance matrix in one population under multivariate normal assumption. In general, the proposed and the likelihood-ratio tests resulted in larger values of estimated powers than VMAX for bivariate and trivariate cases. VMAX was not sensitive to general changes in the covariance (correlation) structure. The advantage of the new test is that it is based on the comparison of all elements of the postulated covariance matrix under the null hypothesis with their respective maximum likelihood sample estimates and therefore, it does not restrict the information of the covariance matrix into a scalar number such as the determinant or trace, for example. Due to the fact that it is based on the maximum likelihood estimates and the Fisher information matrix, it can be used for data coming from distribution other than the multivariate normal.
publishDate 2015
dc.date.none.fl_str_mv 2015-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000100123
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000100123
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0101-7438.2015.035.01.0123
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.35 n.1 2015
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318017788510208