SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382017000200365 |
Resumo: | ABSTRACT In this paper, we discuss computational aspects to obtain accurate inferences for the parameters of the generalized gamma (GG) distribution. Usually, the solution of the maximum likelihood estimators (MLE) for the GG distribution have no stable behavior depending on large sample sizes and good initial values to be used in the iterative numerical algorithms. From a Bayesian approach, this problem remains, but now related to the choice of prior distributions for the parameters of this model. We presented some exploratory techniques to obtain good initial values to be used in the iterative procedures and also to elicited appropriate informative priors. Finally, our proposed methodology is also considered for data sets in the presence of censorship. |
id |
SOBRAPO-1_63e44837e7b7453bbfc52759b257d9b8 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382017000200365 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTIONBayesian InferenceClassical inferenceGeneralized gamma distributionRandom censoringABSTRACT In this paper, we discuss computational aspects to obtain accurate inferences for the parameters of the generalized gamma (GG) distribution. Usually, the solution of the maximum likelihood estimators (MLE) for the GG distribution have no stable behavior depending on large sample sizes and good initial values to be used in the iterative numerical algorithms. From a Bayesian approach, this problem remains, but now related to the choice of prior distributions for the parameters of this model. We presented some exploratory techniques to obtain good initial values to be used in the iterative procedures and also to elicited appropriate informative priors. Finally, our proposed methodology is also considered for data sets in the presence of censorship.Sociedade Brasileira de Pesquisa Operacional2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382017000200365Pesquisa Operacional v.37 n.2 2017reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2017.037.02.0365info:eu-repo/semantics/openAccessAchcar,Jorge A.Ramos,Pedro L.Martinez,Edson Z.eng2017-09-22T00:00:00Zoai:scielo:S0101-74382017000200365Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2017-09-22T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION |
title |
SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION |
spellingShingle |
SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION Achcar,Jorge A. Bayesian Inference Classical inference Generalized gamma distribution Random censoring |
title_short |
SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION |
title_full |
SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION |
title_fullStr |
SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION |
title_full_unstemmed |
SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION |
title_sort |
SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION |
author |
Achcar,Jorge A. |
author_facet |
Achcar,Jorge A. Ramos,Pedro L. Martinez,Edson Z. |
author_role |
author |
author2 |
Ramos,Pedro L. Martinez,Edson Z. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Achcar,Jorge A. Ramos,Pedro L. Martinez,Edson Z. |
dc.subject.por.fl_str_mv |
Bayesian Inference Classical inference Generalized gamma distribution Random censoring |
topic |
Bayesian Inference Classical inference Generalized gamma distribution Random censoring |
description |
ABSTRACT In this paper, we discuss computational aspects to obtain accurate inferences for the parameters of the generalized gamma (GG) distribution. Usually, the solution of the maximum likelihood estimators (MLE) for the GG distribution have no stable behavior depending on large sample sizes and good initial values to be used in the iterative numerical algorithms. From a Bayesian approach, this problem remains, but now related to the choice of prior distributions for the parameters of this model. We presented some exploratory techniques to obtain good initial values to be used in the iterative procedures and also to elicited appropriate informative priors. Finally, our proposed methodology is also considered for data sets in the presence of censorship. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382017000200365 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382017000200365 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0101-7438.2017.037.02.0365 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.37 n.2 2017 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318018162851840 |