SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION

Detalhes bibliográficos
Autor(a) principal: Achcar,Jorge A.
Data de Publicação: 2017
Outros Autores: Ramos,Pedro L., Martinez,Edson Z.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382017000200365
Resumo: ABSTRACT In this paper, we discuss computational aspects to obtain accurate inferences for the parameters of the generalized gamma (GG) distribution. Usually, the solution of the maximum likelihood estimators (MLE) for the GG distribution have no stable behavior depending on large sample sizes and good initial values to be used in the iterative numerical algorithms. From a Bayesian approach, this problem remains, but now related to the choice of prior distributions for the parameters of this model. We presented some exploratory techniques to obtain good initial values to be used in the iterative procedures and also to elicited appropriate informative priors. Finally, our proposed methodology is also considered for data sets in the presence of censorship.
id SOBRAPO-1_63e44837e7b7453bbfc52759b257d9b8
oai_identifier_str oai:scielo:S0101-74382017000200365
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTIONBayesian InferenceClassical inferenceGeneralized gamma distributionRandom censoringABSTRACT In this paper, we discuss computational aspects to obtain accurate inferences for the parameters of the generalized gamma (GG) distribution. Usually, the solution of the maximum likelihood estimators (MLE) for the GG distribution have no stable behavior depending on large sample sizes and good initial values to be used in the iterative numerical algorithms. From a Bayesian approach, this problem remains, but now related to the choice of prior distributions for the parameters of this model. We presented some exploratory techniques to obtain good initial values to be used in the iterative procedures and also to elicited appropriate informative priors. Finally, our proposed methodology is also considered for data sets in the presence of censorship.Sociedade Brasileira de Pesquisa Operacional2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382017000200365Pesquisa Operacional v.37 n.2 2017reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2017.037.02.0365info:eu-repo/semantics/openAccessAchcar,Jorge A.Ramos,Pedro L.Martinez,Edson Z.eng2017-09-22T00:00:00Zoai:scielo:S0101-74382017000200365Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2017-09-22T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION
title SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION
spellingShingle SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION
Achcar,Jorge A.
Bayesian Inference
Classical inference
Generalized gamma distribution
Random censoring
title_short SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION
title_full SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION
title_fullStr SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION
title_full_unstemmed SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION
title_sort SOME COMPUTATIONAL ASPECTS TO FIND ACCURATE ESTIMATES FOR THE PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION
author Achcar,Jorge A.
author_facet Achcar,Jorge A.
Ramos,Pedro L.
Martinez,Edson Z.
author_role author
author2 Ramos,Pedro L.
Martinez,Edson Z.
author2_role author
author
dc.contributor.author.fl_str_mv Achcar,Jorge A.
Ramos,Pedro L.
Martinez,Edson Z.
dc.subject.por.fl_str_mv Bayesian Inference
Classical inference
Generalized gamma distribution
Random censoring
topic Bayesian Inference
Classical inference
Generalized gamma distribution
Random censoring
description ABSTRACT In this paper, we discuss computational aspects to obtain accurate inferences for the parameters of the generalized gamma (GG) distribution. Usually, the solution of the maximum likelihood estimators (MLE) for the GG distribution have no stable behavior depending on large sample sizes and good initial values to be used in the iterative numerical algorithms. From a Bayesian approach, this problem remains, but now related to the choice of prior distributions for the parameters of this model. We presented some exploratory techniques to obtain good initial values to be used in the iterative procedures and also to elicited appropriate informative priors. Finally, our proposed methodology is also considered for data sets in the presence of censorship.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382017000200365
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382017000200365
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0101-7438.2017.037.02.0365
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.37 n.2 2017
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318018162851840