ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000100073 |
Resumo: | This paper proposes a method (denoted by WD-ANN) that combines the Artificial Neural Networks (ANN) and the Wavelet Decomposition (WD) to generate short-term global horizontal solar radiation forecasting, which is an essential information for evaluating the electrical power generated from the conversion of solar energy into electrical energy. The WD-ANN method consists of two basic steps: firstly, it is performed the decomposition of level p of the time series of interest, generating p + 1 wavelet orthonormal components; secondly, the p + 1 wavelet orthonormal components (generated in the step 1) are inserted simultaneously into an ANN in order to generate short-term forecasting. The results showed that the proposed method (WD-ANN) improved substantially the performance over the (traditional) ANN method. |
id |
SOBRAPO-1_751df30a0c16b49d545a224ca260daec |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382015000100073 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATIONwavelet decompositionartificial neural networksforecastsThis paper proposes a method (denoted by WD-ANN) that combines the Artificial Neural Networks (ANN) and the Wavelet Decomposition (WD) to generate short-term global horizontal solar radiation forecasting, which is an essential information for evaluating the electrical power generated from the conversion of solar energy into electrical energy. The WD-ANN method consists of two basic steps: firstly, it is performed the decomposition of level p of the time series of interest, generating p + 1 wavelet orthonormal components; secondly, the p + 1 wavelet orthonormal components (generated in the step 1) are inserted simultaneously into an ANN in order to generate short-term forecasting. The results showed that the proposed method (WD-ANN) improved substantially the performance over the (traditional) ANN method.Sociedade Brasileira de Pesquisa Operacional2015-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000100073Pesquisa Operacional v.35 n.1 2015reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2015.035.01.0073info:eu-repo/semantics/openAccessTeixeira Júnior,Luiz AlbinoSouza,Rafael Morais deMenezes,Moisés Lima deCassiano,Keila MaraPessanha,José Francisco MoreiraSouza,Reinaldo Castroeng2015-05-19T00:00:00Zoai:scielo:S0101-74382015000100073Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2015-05-19T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION |
title |
ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION |
spellingShingle |
ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION Teixeira Júnior,Luiz Albino wavelet decomposition artificial neural networks forecasts |
title_short |
ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION |
title_full |
ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION |
title_fullStr |
ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION |
title_full_unstemmed |
ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION |
title_sort |
ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION |
author |
Teixeira Júnior,Luiz Albino |
author_facet |
Teixeira Júnior,Luiz Albino Souza,Rafael Morais de Menezes,Moisés Lima de Cassiano,Keila Mara Pessanha,José Francisco Moreira Souza,Reinaldo Castro |
author_role |
author |
author2 |
Souza,Rafael Morais de Menezes,Moisés Lima de Cassiano,Keila Mara Pessanha,José Francisco Moreira Souza,Reinaldo Castro |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Teixeira Júnior,Luiz Albino Souza,Rafael Morais de Menezes,Moisés Lima de Cassiano,Keila Mara Pessanha,José Francisco Moreira Souza,Reinaldo Castro |
dc.subject.por.fl_str_mv |
wavelet decomposition artificial neural networks forecasts |
topic |
wavelet decomposition artificial neural networks forecasts |
description |
This paper proposes a method (denoted by WD-ANN) that combines the Artificial Neural Networks (ANN) and the Wavelet Decomposition (WD) to generate short-term global horizontal solar radiation forecasting, which is an essential information for evaluating the electrical power generated from the conversion of solar energy into electrical energy. The WD-ANN method consists of two basic steps: firstly, it is performed the decomposition of level p of the time series of interest, generating p + 1 wavelet orthonormal components; secondly, the p + 1 wavelet orthonormal components (generated in the step 1) are inserted simultaneously into an ANN in order to generate short-term forecasting. The results showed that the proposed method (WD-ANN) improved substantially the performance over the (traditional) ANN method. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000100073 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000100073 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0101-7438.2015.035.01.0073 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.35 n.1 2015 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318017785364480 |