Rough set and rule-based multicriteria decision aiding
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000200001 |
Resumo: | The aim of multicriteria decision aiding is to give the decision maker a recommendation concerning a set of objects evaluated from multiple points of view called criteria. Since a rational decision maker acts with respect to his/her value system, in order to recommend the most-preferred decision, one must identify decision maker's preferences. In this paper, we focus on preference discovery from data concerning some past decisions of the decision maker. We consider the preference model in the form of a set of "if..., then..." decision rules discovered from the data by inductive learning. To structure the data prior to induction of rules, we use the Dominance-based Rough Set Approach (DRSA). DRSA is a methodology for reasoning about data, which handles ordinal evaluations of objects on considered criteria and monotonic relationships between these evaluations and the decision. We review applications of DRSA to a large variety of multicriteria decision problems. |
id |
SOBRAPO-1_765f2eed42fec2ccce4eb6bfbe65e10a |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382012000200001 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
Rough set and rule-based multicriteria decision aidingmulticriteria decision aidingordinal classificationchoicerankingDominance-based Rough Set Approachpreference modelingdecision rulesThe aim of multicriteria decision aiding is to give the decision maker a recommendation concerning a set of objects evaluated from multiple points of view called criteria. Since a rational decision maker acts with respect to his/her value system, in order to recommend the most-preferred decision, one must identify decision maker's preferences. In this paper, we focus on preference discovery from data concerning some past decisions of the decision maker. We consider the preference model in the form of a set of "if..., then..." decision rules discovered from the data by inductive learning. To structure the data prior to induction of rules, we use the Dominance-based Rough Set Approach (DRSA). DRSA is a methodology for reasoning about data, which handles ordinal evaluations of objects on considered criteria and monotonic relationships between these evaluations and the decision. We review applications of DRSA to a large variety of multicriteria decision problems.Sociedade Brasileira de Pesquisa Operacional2012-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000200001Pesquisa Operacional v.32 n.2 2012reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382012000200001info:eu-repo/semantics/openAccessSlowinski,RomanGreco,SalvatoreMatarazzo,Benedettoeng2012-09-04T00:00:00Zoai:scielo:S0101-74382012000200001Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2012-09-04T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
Rough set and rule-based multicriteria decision aiding |
title |
Rough set and rule-based multicriteria decision aiding |
spellingShingle |
Rough set and rule-based multicriteria decision aiding Slowinski,Roman multicriteria decision aiding ordinal classification choice ranking Dominance-based Rough Set Approach preference modeling decision rules |
title_short |
Rough set and rule-based multicriteria decision aiding |
title_full |
Rough set and rule-based multicriteria decision aiding |
title_fullStr |
Rough set and rule-based multicriteria decision aiding |
title_full_unstemmed |
Rough set and rule-based multicriteria decision aiding |
title_sort |
Rough set and rule-based multicriteria decision aiding |
author |
Slowinski,Roman |
author_facet |
Slowinski,Roman Greco,Salvatore Matarazzo,Benedetto |
author_role |
author |
author2 |
Greco,Salvatore Matarazzo,Benedetto |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Slowinski,Roman Greco,Salvatore Matarazzo,Benedetto |
dc.subject.por.fl_str_mv |
multicriteria decision aiding ordinal classification choice ranking Dominance-based Rough Set Approach preference modeling decision rules |
topic |
multicriteria decision aiding ordinal classification choice ranking Dominance-based Rough Set Approach preference modeling decision rules |
description |
The aim of multicriteria decision aiding is to give the decision maker a recommendation concerning a set of objects evaluated from multiple points of view called criteria. Since a rational decision maker acts with respect to his/her value system, in order to recommend the most-preferred decision, one must identify decision maker's preferences. In this paper, we focus on preference discovery from data concerning some past decisions of the decision maker. We consider the preference model in the form of a set of "if..., then..." decision rules discovered from the data by inductive learning. To structure the data prior to induction of rules, we use the Dominance-based Rough Set Approach (DRSA). DRSA is a methodology for reasoning about data, which handles ordinal evaluations of objects on considered criteria and monotonic relationships between these evaluations and the decision. We review applications of DRSA to a large variety of multicriteria decision problems. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000200001 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000200001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-74382012000200001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.32 n.2 2012 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318017368031232 |