Rough set and rule-based multicriteria decision aiding

Detalhes bibliográficos
Autor(a) principal: Slowinski,Roman
Data de Publicação: 2012
Outros Autores: Greco,Salvatore, Matarazzo,Benedetto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000200001
Resumo: The aim of multicriteria decision aiding is to give the decision maker a recommendation concerning a set of objects evaluated from multiple points of view called criteria. Since a rational decision maker acts with respect to his/her value system, in order to recommend the most-preferred decision, one must identify decision maker's preferences. In this paper, we focus on preference discovery from data concerning some past decisions of the decision maker. We consider the preference model in the form of a set of "if..., then..." decision rules discovered from the data by inductive learning. To structure the data prior to induction of rules, we use the Dominance-based Rough Set Approach (DRSA). DRSA is a methodology for reasoning about data, which handles ordinal evaluations of objects on considered criteria and monotonic relationships between these evaluations and the decision. We review applications of DRSA to a large variety of multicriteria decision problems.
id SOBRAPO-1_765f2eed42fec2ccce4eb6bfbe65e10a
oai_identifier_str oai:scielo:S0101-74382012000200001
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling Rough set and rule-based multicriteria decision aidingmulticriteria decision aidingordinal classificationchoicerankingDominance-based Rough Set Approachpreference modelingdecision rulesThe aim of multicriteria decision aiding is to give the decision maker a recommendation concerning a set of objects evaluated from multiple points of view called criteria. Since a rational decision maker acts with respect to his/her value system, in order to recommend the most-preferred decision, one must identify decision maker's preferences. In this paper, we focus on preference discovery from data concerning some past decisions of the decision maker. We consider the preference model in the form of a set of "if..., then..." decision rules discovered from the data by inductive learning. To structure the data prior to induction of rules, we use the Dominance-based Rough Set Approach (DRSA). DRSA is a methodology for reasoning about data, which handles ordinal evaluations of objects on considered criteria and monotonic relationships between these evaluations and the decision. We review applications of DRSA to a large variety of multicriteria decision problems.Sociedade Brasileira de Pesquisa Operacional2012-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000200001Pesquisa Operacional v.32 n.2 2012reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382012000200001info:eu-repo/semantics/openAccessSlowinski,RomanGreco,SalvatoreMatarazzo,Benedettoeng2012-09-04T00:00:00Zoai:scielo:S0101-74382012000200001Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2012-09-04T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv Rough set and rule-based multicriteria decision aiding
title Rough set and rule-based multicriteria decision aiding
spellingShingle Rough set and rule-based multicriteria decision aiding
Slowinski,Roman
multicriteria decision aiding
ordinal classification
choice
ranking
Dominance-based Rough Set Approach
preference modeling
decision rules
title_short Rough set and rule-based multicriteria decision aiding
title_full Rough set and rule-based multicriteria decision aiding
title_fullStr Rough set and rule-based multicriteria decision aiding
title_full_unstemmed Rough set and rule-based multicriteria decision aiding
title_sort Rough set and rule-based multicriteria decision aiding
author Slowinski,Roman
author_facet Slowinski,Roman
Greco,Salvatore
Matarazzo,Benedetto
author_role author
author2 Greco,Salvatore
Matarazzo,Benedetto
author2_role author
author
dc.contributor.author.fl_str_mv Slowinski,Roman
Greco,Salvatore
Matarazzo,Benedetto
dc.subject.por.fl_str_mv multicriteria decision aiding
ordinal classification
choice
ranking
Dominance-based Rough Set Approach
preference modeling
decision rules
topic multicriteria decision aiding
ordinal classification
choice
ranking
Dominance-based Rough Set Approach
preference modeling
decision rules
description The aim of multicriteria decision aiding is to give the decision maker a recommendation concerning a set of objects evaluated from multiple points of view called criteria. Since a rational decision maker acts with respect to his/her value system, in order to recommend the most-preferred decision, one must identify decision maker's preferences. In this paper, we focus on preference discovery from data concerning some past decisions of the decision maker. We consider the preference model in the form of a set of "if..., then..." decision rules discovered from the data by inductive learning. To structure the data prior to induction of rules, we use the Dominance-based Rough Set Approach (DRSA). DRSA is a methodology for reasoning about data, which handles ordinal evaluations of objects on considered criteria and monotonic relationships between these evaluations and the decision. We review applications of DRSA to a large variety of multicriteria decision problems.
publishDate 2012
dc.date.none.fl_str_mv 2012-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000200001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000200001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0101-74382012000200001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.32 n.2 2012
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318017368031232