A systematic approach to construct credit risk forecast models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000100004 |
Resumo: | Due to the recent growth in the consumer credit market and the consequent increase in default indices, companies are seeking to improve their credit analysis by incorporating objective procedures. Multivariate techniques have been used as an alternative to construct quantitative models for credit forecast. These techniques are based on consumer profile data and allow the identification of standards concerning default behavior. This paper presents a methodology for forecasting credit risk by using three multivariate techniques: discriminant analysis, logistic regression and neural networks. The proposed method (deemed the CRF Model) consists of six steps and is illustrated by means of a real application. An important contribution of this paper is the organization of the methodological procedures and the discussion of the decisions that should be made during the application of the model. The feasibility of the approach proposed was tested in a program for granting credit offered by a network of pharmacies. The use of the models for forecasting credit risk greatly reduces the subjectivity of the analysis, by establishing a standardized procedure that speeds up and qualifies credit analysis |
id |
SOBRAPO-1_995a567289db562f0b1c62757de1c3ef |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382011000100004 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
A systematic approach to construct credit risk forecast modelscredit analysisforecast modelcredit riskDue to the recent growth in the consumer credit market and the consequent increase in default indices, companies are seeking to improve their credit analysis by incorporating objective procedures. Multivariate techniques have been used as an alternative to construct quantitative models for credit forecast. These techniques are based on consumer profile data and allow the identification of standards concerning default behavior. This paper presents a methodology for forecasting credit risk by using three multivariate techniques: discriminant analysis, logistic regression and neural networks. The proposed method (deemed the CRF Model) consists of six steps and is illustrated by means of a real application. An important contribution of this paper is the organization of the methodological procedures and the discussion of the decisions that should be made during the application of the model. The feasibility of the approach proposed was tested in a program for granting credit offered by a network of pharmacies. The use of the models for forecasting credit risk greatly reduces the subjectivity of the analysis, by establishing a standardized procedure that speeds up and qualifies credit analysisSociedade Brasileira de Pesquisa Operacional2011-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000100004Pesquisa Operacional v.31 n.1 2011reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382011000100004info:eu-repo/semantics/openAccessSelau,Lisiane Priscila RoldãoRibeiro,José Luis Duarteeng2011-05-02T00:00:00Zoai:scielo:S0101-74382011000100004Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2011-05-02T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
A systematic approach to construct credit risk forecast models |
title |
A systematic approach to construct credit risk forecast models |
spellingShingle |
A systematic approach to construct credit risk forecast models Selau,Lisiane Priscila Roldão credit analysis forecast model credit risk |
title_short |
A systematic approach to construct credit risk forecast models |
title_full |
A systematic approach to construct credit risk forecast models |
title_fullStr |
A systematic approach to construct credit risk forecast models |
title_full_unstemmed |
A systematic approach to construct credit risk forecast models |
title_sort |
A systematic approach to construct credit risk forecast models |
author |
Selau,Lisiane Priscila Roldão |
author_facet |
Selau,Lisiane Priscila Roldão Ribeiro,José Luis Duarte |
author_role |
author |
author2 |
Ribeiro,José Luis Duarte |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Selau,Lisiane Priscila Roldão Ribeiro,José Luis Duarte |
dc.subject.por.fl_str_mv |
credit analysis forecast model credit risk |
topic |
credit analysis forecast model credit risk |
description |
Due to the recent growth in the consumer credit market and the consequent increase in default indices, companies are seeking to improve their credit analysis by incorporating objective procedures. Multivariate techniques have been used as an alternative to construct quantitative models for credit forecast. These techniques are based on consumer profile data and allow the identification of standards concerning default behavior. This paper presents a methodology for forecasting credit risk by using three multivariate techniques: discriminant analysis, logistic regression and neural networks. The proposed method (deemed the CRF Model) consists of six steps and is illustrated by means of a real application. An important contribution of this paper is the organization of the methodological procedures and the discussion of the decisions that should be made during the application of the model. The feasibility of the approach proposed was tested in a program for granting credit offered by a network of pharmacies. The use of the models for forecasting credit risk greatly reduces the subjectivity of the analysis, by establishing a standardized procedure that speeds up and qualifies credit analysis |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000100004 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000100004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-74382011000100004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.31 n.1 2011 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318017314553856 |