Heuristics for minimizing the maximum within-clusters distance

Detalhes bibliográficos
Autor(a) principal: Fioruci,José Augusto
Data de Publicação: 2012
Outros Autores: Toledo,Franklina M.B., Nascimento,Mariá Cristina V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000300002
Resumo: The clustering problem consists in finding patterns in a data set in order to divide it into clusters with high within-cluster similarity. This paper presents the study of a problem, here called MMD problem, which aims at finding a clustering with a predefined number of clusters that minimizes the largest within-cluster distance (diameter) among all clusters. There are two main objectives in this paper: to propose heuristics for the MMD and to evaluate the suitability of the best proposed heuristic results according to the real classification of some data sets. Regarding the first objective, the results obtained in the experiments indicate a good performance of the best proposed heuristic that outperformed the Complete Linkage algorithm (the most used method from the literature for this problem). Nevertheless, regarding the suitability of the results according to the real classification of the data sets, the proposed heuristic achieved better quality results than C-Means algorithm, but worse than Complete Linkage.
id SOBRAPO-1_c8416d4734c6e792485427cd9de9de5c
oai_identifier_str oai:scielo:S0101-74382012000300002
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling Heuristics for minimizing the maximum within-clusters distanceclusteringheuristicsGRASPminimization of the maximum diameterThe clustering problem consists in finding patterns in a data set in order to divide it into clusters with high within-cluster similarity. This paper presents the study of a problem, here called MMD problem, which aims at finding a clustering with a predefined number of clusters that minimizes the largest within-cluster distance (diameter) among all clusters. There are two main objectives in this paper: to propose heuristics for the MMD and to evaluate the suitability of the best proposed heuristic results according to the real classification of some data sets. Regarding the first objective, the results obtained in the experiments indicate a good performance of the best proposed heuristic that outperformed the Complete Linkage algorithm (the most used method from the literature for this problem). Nevertheless, regarding the suitability of the results according to the real classification of the data sets, the proposed heuristic achieved better quality results than C-Means algorithm, but worse than Complete Linkage.Sociedade Brasileira de Pesquisa Operacional2012-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000300002Pesquisa Operacional v.32 n.3 2012reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382012005000023info:eu-repo/semantics/openAccessFioruci,José AugustoToledo,Franklina M.B.Nascimento,Mariá Cristina V.eng2012-12-10T00:00:00Zoai:scielo:S0101-74382012000300002Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2012-12-10T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv Heuristics for minimizing the maximum within-clusters distance
title Heuristics for minimizing the maximum within-clusters distance
spellingShingle Heuristics for minimizing the maximum within-clusters distance
Fioruci,José Augusto
clustering
heuristics
GRASP
minimization of the maximum diameter
title_short Heuristics for minimizing the maximum within-clusters distance
title_full Heuristics for minimizing the maximum within-clusters distance
title_fullStr Heuristics for minimizing the maximum within-clusters distance
title_full_unstemmed Heuristics for minimizing the maximum within-clusters distance
title_sort Heuristics for minimizing the maximum within-clusters distance
author Fioruci,José Augusto
author_facet Fioruci,José Augusto
Toledo,Franklina M.B.
Nascimento,Mariá Cristina V.
author_role author
author2 Toledo,Franklina M.B.
Nascimento,Mariá Cristina V.
author2_role author
author
dc.contributor.author.fl_str_mv Fioruci,José Augusto
Toledo,Franklina M.B.
Nascimento,Mariá Cristina V.
dc.subject.por.fl_str_mv clustering
heuristics
GRASP
minimization of the maximum diameter
topic clustering
heuristics
GRASP
minimization of the maximum diameter
description The clustering problem consists in finding patterns in a data set in order to divide it into clusters with high within-cluster similarity. This paper presents the study of a problem, here called MMD problem, which aims at finding a clustering with a predefined number of clusters that minimizes the largest within-cluster distance (diameter) among all clusters. There are two main objectives in this paper: to propose heuristics for the MMD and to evaluate the suitability of the best proposed heuristic results according to the real classification of some data sets. Regarding the first objective, the results obtained in the experiments indicate a good performance of the best proposed heuristic that outperformed the Complete Linkage algorithm (the most used method from the literature for this problem). Nevertheless, regarding the suitability of the results according to the real classification of the data sets, the proposed heuristic achieved better quality results than C-Means algorithm, but worse than Complete Linkage.
publishDate 2012
dc.date.none.fl_str_mv 2012-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000300002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000300002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0101-74382012005000023
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.32 n.3 2012
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318017423605760