Heuristics for minimizing the maximum within-clusters distance
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000300002 |
Resumo: | The clustering problem consists in finding patterns in a data set in order to divide it into clusters with high within-cluster similarity. This paper presents the study of a problem, here called MMD problem, which aims at finding a clustering with a predefined number of clusters that minimizes the largest within-cluster distance (diameter) among all clusters. There are two main objectives in this paper: to propose heuristics for the MMD and to evaluate the suitability of the best proposed heuristic results according to the real classification of some data sets. Regarding the first objective, the results obtained in the experiments indicate a good performance of the best proposed heuristic that outperformed the Complete Linkage algorithm (the most used method from the literature for this problem). Nevertheless, regarding the suitability of the results according to the real classification of the data sets, the proposed heuristic achieved better quality results than C-Means algorithm, but worse than Complete Linkage. |
id |
SOBRAPO-1_c8416d4734c6e792485427cd9de9de5c |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382012000300002 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
Heuristics for minimizing the maximum within-clusters distanceclusteringheuristicsGRASPminimization of the maximum diameterThe clustering problem consists in finding patterns in a data set in order to divide it into clusters with high within-cluster similarity. This paper presents the study of a problem, here called MMD problem, which aims at finding a clustering with a predefined number of clusters that minimizes the largest within-cluster distance (diameter) among all clusters. There are two main objectives in this paper: to propose heuristics for the MMD and to evaluate the suitability of the best proposed heuristic results according to the real classification of some data sets. Regarding the first objective, the results obtained in the experiments indicate a good performance of the best proposed heuristic that outperformed the Complete Linkage algorithm (the most used method from the literature for this problem). Nevertheless, regarding the suitability of the results according to the real classification of the data sets, the proposed heuristic achieved better quality results than C-Means algorithm, but worse than Complete Linkage.Sociedade Brasileira de Pesquisa Operacional2012-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000300002Pesquisa Operacional v.32 n.3 2012reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382012005000023info:eu-repo/semantics/openAccessFioruci,José AugustoToledo,Franklina M.B.Nascimento,Mariá Cristina V.eng2012-12-10T00:00:00Zoai:scielo:S0101-74382012000300002Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2012-12-10T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
Heuristics for minimizing the maximum within-clusters distance |
title |
Heuristics for minimizing the maximum within-clusters distance |
spellingShingle |
Heuristics for minimizing the maximum within-clusters distance Fioruci,José Augusto clustering heuristics GRASP minimization of the maximum diameter |
title_short |
Heuristics for minimizing the maximum within-clusters distance |
title_full |
Heuristics for minimizing the maximum within-clusters distance |
title_fullStr |
Heuristics for minimizing the maximum within-clusters distance |
title_full_unstemmed |
Heuristics for minimizing the maximum within-clusters distance |
title_sort |
Heuristics for minimizing the maximum within-clusters distance |
author |
Fioruci,José Augusto |
author_facet |
Fioruci,José Augusto Toledo,Franklina M.B. Nascimento,Mariá Cristina V. |
author_role |
author |
author2 |
Toledo,Franklina M.B. Nascimento,Mariá Cristina V. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Fioruci,José Augusto Toledo,Franklina M.B. Nascimento,Mariá Cristina V. |
dc.subject.por.fl_str_mv |
clustering heuristics GRASP minimization of the maximum diameter |
topic |
clustering heuristics GRASP minimization of the maximum diameter |
description |
The clustering problem consists in finding patterns in a data set in order to divide it into clusters with high within-cluster similarity. This paper presents the study of a problem, here called MMD problem, which aims at finding a clustering with a predefined number of clusters that minimizes the largest within-cluster distance (diameter) among all clusters. There are two main objectives in this paper: to propose heuristics for the MMD and to evaluate the suitability of the best proposed heuristic results according to the real classification of some data sets. Regarding the first objective, the results obtained in the experiments indicate a good performance of the best proposed heuristic that outperformed the Complete Linkage algorithm (the most used method from the literature for this problem). Nevertheless, regarding the suitability of the results according to the real classification of the data sets, the proposed heuristic achieved better quality results than C-Means algorithm, but worse than Complete Linkage. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000300002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000300002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-74382012005000023 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.32 n.3 2012 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318017423605760 |