An hybrid architecture for clusters analysis: rough setstheory and self-organizing map artificial neural network
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000100009 |
Resumo: | The database of real world contains a huge volume of data and among them there are hidden piles of interesting relations that are actually very hard to find out. The knowledge discovery in databases (KDD) appears as a possible solution to find out such relations aiming at converting information into knowledge. However, not all data presented in the bases are useful to a KDD. Usually, data are processed before being presented to a KDD aiming at reducing the amount of data and also at selecting more relevant data to be used by the system. This work consists in the use of Rough Sets Theory, in order to pre-processing data to be presented to Self-Organizing Map neural network (Hybrid Architecture) for clusters analysis. Experiments' results evidence the better performance using the Hybrid Architecture than Self-Organizing Map. The paper also presents all phases of the KDD process. |
id |
SOBRAPO-1_cb0a33967ff49a3df07457b41fe81968 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382012000100009 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
An hybrid architecture for clusters analysis: rough setstheory and self-organizing map artificial neural networkclusters analysisrough sets theoryself-organizing mapThe database of real world contains a huge volume of data and among them there are hidden piles of interesting relations that are actually very hard to find out. The knowledge discovery in databases (KDD) appears as a possible solution to find out such relations aiming at converting information into knowledge. However, not all data presented in the bases are useful to a KDD. Usually, data are processed before being presented to a KDD aiming at reducing the amount of data and also at selecting more relevant data to be used by the system. This work consists in the use of Rough Sets Theory, in order to pre-processing data to be presented to Self-Organizing Map neural network (Hybrid Architecture) for clusters analysis. Experiments' results evidence the better performance using the Hybrid Architecture than Self-Organizing Map. The paper also presents all phases of the KDD process.Sociedade Brasileira de Pesquisa Operacional2012-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000100009Pesquisa Operacional v.32 n.1 2012reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382012005000001info:eu-repo/semantics/openAccessSassi,Renato Joséeng2012-05-02T00:00:00Zoai:scielo:S0101-74382012000100009Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2012-05-02T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
An hybrid architecture for clusters analysis: rough setstheory and self-organizing map artificial neural network |
title |
An hybrid architecture for clusters analysis: rough setstheory and self-organizing map artificial neural network |
spellingShingle |
An hybrid architecture for clusters analysis: rough setstheory and self-organizing map artificial neural network Sassi,Renato José clusters analysis rough sets theory self-organizing map |
title_short |
An hybrid architecture for clusters analysis: rough setstheory and self-organizing map artificial neural network |
title_full |
An hybrid architecture for clusters analysis: rough setstheory and self-organizing map artificial neural network |
title_fullStr |
An hybrid architecture for clusters analysis: rough setstheory and self-organizing map artificial neural network |
title_full_unstemmed |
An hybrid architecture for clusters analysis: rough setstheory and self-organizing map artificial neural network |
title_sort |
An hybrid architecture for clusters analysis: rough setstheory and self-organizing map artificial neural network |
author |
Sassi,Renato José |
author_facet |
Sassi,Renato José |
author_role |
author |
dc.contributor.author.fl_str_mv |
Sassi,Renato José |
dc.subject.por.fl_str_mv |
clusters analysis rough sets theory self-organizing map |
topic |
clusters analysis rough sets theory self-organizing map |
description |
The database of real world contains a huge volume of data and among them there are hidden piles of interesting relations that are actually very hard to find out. The knowledge discovery in databases (KDD) appears as a possible solution to find out such relations aiming at converting information into knowledge. However, not all data presented in the bases are useful to a KDD. Usually, data are processed before being presented to a KDD aiming at reducing the amount of data and also at selecting more relevant data to be used by the system. This work consists in the use of Rough Sets Theory, in order to pre-processing data to be presented to Self-Organizing Map neural network (Hybrid Architecture) for clusters analysis. Experiments' results evidence the better performance using the Hybrid Architecture than Self-Organizing Map. The paper also presents all phases of the KDD process. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000100009 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382012000100009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-74382012005000001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.32 n.1 2012 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318017395294208 |