Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study

Detalhes bibliográficos
Autor(a) principal: Gonçalves,Leonardo Barroso
Data de Publicação: 2011
Outros Autores: Macrini,José Leonardo Ribeiro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000300006
Resumo: This paper approaches the algorithm of selection of variables named MIFS-U and presents an alternative method for estimating entropy and mutual information, "measures" that constitute the base of this selection algorithm. This method has, for foundation, the Cauchy-Schwartz quadratic mutual information and the Rényi quadratic entropy, combined, in the case of continuous variables, with Parzen Window density estimation. Experiments were accomplished with public domain data, being such method compared with the original MIFS-U algorithm, broadly used, that adopts the Shannon entropy definition and makes use, in the case of continuous variables, of the histogram density estimator. The results show small variations between the two methods, what suggest a future investigation using a classifier, such as Neural Networks, to qualitatively evaluate these results, in the light of the final objective which is greater accuracy of classification.
id SOBRAPO-1_f38a84db9e2d25e676dda6f59eb8a6ee
oai_identifier_str oai:scielo:S0101-74382011000300006
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative studyvariable selectionMIFS-Uentropymutual informationShannonRényiParzen WindowInformation-Theoretic LearningITLThis paper approaches the algorithm of selection of variables named MIFS-U and presents an alternative method for estimating entropy and mutual information, "measures" that constitute the base of this selection algorithm. This method has, for foundation, the Cauchy-Schwartz quadratic mutual information and the Rényi quadratic entropy, combined, in the case of continuous variables, with Parzen Window density estimation. Experiments were accomplished with public domain data, being such method compared with the original MIFS-U algorithm, broadly used, that adopts the Shannon entropy definition and makes use, in the case of continuous variables, of the histogram density estimator. The results show small variations between the two methods, what suggest a future investigation using a classifier, such as Neural Networks, to qualitatively evaluate these results, in the light of the final objective which is greater accuracy of classification.Sociedade Brasileira de Pesquisa Operacional2011-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000300006Pesquisa Operacional v.31 n.3 2011reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382011000300006info:eu-repo/semantics/openAccessGonçalves,Leonardo BarrosoMacrini,José Leonardo Ribeiroeng2011-11-03T00:00:00Zoai:scielo:S0101-74382011000300006Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2011-11-03T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study
title Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study
spellingShingle Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study
Gonçalves,Leonardo Barroso
variable selection
MIFS-U
entropy
mutual information
Shannon
Rényi
Parzen Window
Information-Theoretic Learning
ITL
title_short Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study
title_full Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study
title_fullStr Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study
title_full_unstemmed Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study
title_sort Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study
author Gonçalves,Leonardo Barroso
author_facet Gonçalves,Leonardo Barroso
Macrini,José Leonardo Ribeiro
author_role author
author2 Macrini,José Leonardo Ribeiro
author2_role author
dc.contributor.author.fl_str_mv Gonçalves,Leonardo Barroso
Macrini,José Leonardo Ribeiro
dc.subject.por.fl_str_mv variable selection
MIFS-U
entropy
mutual information
Shannon
Rényi
Parzen Window
Information-Theoretic Learning
ITL
topic variable selection
MIFS-U
entropy
mutual information
Shannon
Rényi
Parzen Window
Information-Theoretic Learning
ITL
description This paper approaches the algorithm of selection of variables named MIFS-U and presents an alternative method for estimating entropy and mutual information, "measures" that constitute the base of this selection algorithm. This method has, for foundation, the Cauchy-Schwartz quadratic mutual information and the Rényi quadratic entropy, combined, in the case of continuous variables, with Parzen Window density estimation. Experiments were accomplished with public domain data, being such method compared with the original MIFS-U algorithm, broadly used, that adopts the Shannon entropy definition and makes use, in the case of continuous variables, of the histogram density estimator. The results show small variations between the two methods, what suggest a future investigation using a classifier, such as Neural Networks, to qualitatively evaluate these results, in the light of the final objective which is greater accuracy of classification.
publishDate 2011
dc.date.none.fl_str_mv 2011-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000300006
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000300006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0101-74382011000300006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.31 n.3 2011
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318017347059712