Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000300006 |
Resumo: | This paper approaches the algorithm of selection of variables named MIFS-U and presents an alternative method for estimating entropy and mutual information, "measures" that constitute the base of this selection algorithm. This method has, for foundation, the Cauchy-Schwartz quadratic mutual information and the Rényi quadratic entropy, combined, in the case of continuous variables, with Parzen Window density estimation. Experiments were accomplished with public domain data, being such method compared with the original MIFS-U algorithm, broadly used, that adopts the Shannon entropy definition and makes use, in the case of continuous variables, of the histogram density estimator. The results show small variations between the two methods, what suggest a future investigation using a classifier, such as Neural Networks, to qualitatively evaluate these results, in the light of the final objective which is greater accuracy of classification. |
id |
SOBRAPO-1_f38a84db9e2d25e676dda6f59eb8a6ee |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382011000300006 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative studyvariable selectionMIFS-Uentropymutual informationShannonRényiParzen WindowInformation-Theoretic LearningITLThis paper approaches the algorithm of selection of variables named MIFS-U and presents an alternative method for estimating entropy and mutual information, "measures" that constitute the base of this selection algorithm. This method has, for foundation, the Cauchy-Schwartz quadratic mutual information and the Rényi quadratic entropy, combined, in the case of continuous variables, with Parzen Window density estimation. Experiments were accomplished with public domain data, being such method compared with the original MIFS-U algorithm, broadly used, that adopts the Shannon entropy definition and makes use, in the case of continuous variables, of the histogram density estimator. The results show small variations between the two methods, what suggest a future investigation using a classifier, such as Neural Networks, to qualitatively evaluate these results, in the light of the final objective which is greater accuracy of classification.Sociedade Brasileira de Pesquisa Operacional2011-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000300006Pesquisa Operacional v.31 n.3 2011reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382011000300006info:eu-repo/semantics/openAccessGonçalves,Leonardo BarrosoMacrini,José Leonardo Ribeiroeng2011-11-03T00:00:00Zoai:scielo:S0101-74382011000300006Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2011-11-03T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study |
title |
Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study |
spellingShingle |
Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study Gonçalves,Leonardo Barroso variable selection MIFS-U entropy mutual information Shannon Rényi Parzen Window Information-Theoretic Learning ITL |
title_short |
Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study |
title_full |
Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study |
title_fullStr |
Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study |
title_full_unstemmed |
Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study |
title_sort |
Rényi entropy and cauchy-schwartz mutual information applied to mifs-u variable selection algorithm: a comparative study |
author |
Gonçalves,Leonardo Barroso |
author_facet |
Gonçalves,Leonardo Barroso Macrini,José Leonardo Ribeiro |
author_role |
author |
author2 |
Macrini,José Leonardo Ribeiro |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Gonçalves,Leonardo Barroso Macrini,José Leonardo Ribeiro |
dc.subject.por.fl_str_mv |
variable selection MIFS-U entropy mutual information Shannon Rényi Parzen Window Information-Theoretic Learning ITL |
topic |
variable selection MIFS-U entropy mutual information Shannon Rényi Parzen Window Information-Theoretic Learning ITL |
description |
This paper approaches the algorithm of selection of variables named MIFS-U and presents an alternative method for estimating entropy and mutual information, "measures" that constitute the base of this selection algorithm. This method has, for foundation, the Cauchy-Schwartz quadratic mutual information and the Rényi quadratic entropy, combined, in the case of continuous variables, with Parzen Window density estimation. Experiments were accomplished with public domain data, being such method compared with the original MIFS-U algorithm, broadly used, that adopts the Shannon entropy definition and makes use, in the case of continuous variables, of the histogram density estimator. The results show small variations between the two methods, what suggest a future investigation using a classifier, such as Neural Networks, to qualitatively evaluate these results, in the light of the final objective which is greater accuracy of classification. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000300006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382011000300006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-74382011000300006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.31 n.3 2011 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318017347059712 |