TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum

Detalhes bibliográficos
Autor(a) principal: Adams,Augusto Mathias
Data de Publicação: 2021
Outros Autores: Heilmann,Armando, Adams,Anselmo Daniel, Dartora,César Augusto, Odake Junior,Edson Masao, Tertuliano Filho,Horácio, Santos,Luis Augusto Cordeiro dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Archives of Biology and Technology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132021000200213
Resumo: Abstract During the last year the Group of Atmospheric Electricity Phenomena (FEA/UFPR) developed a short range lightning location network based on a sensor device called Storm Detector Network (SDN), along with a set of algorithms that enables to track storms, determining the Wide Area Probability (WAP) of lightning occurrence, risk level of lightning and Density Extension of the Flashes (DEF), using the geo-located lightning information as input data. These algorithms compose a Dashboard called Tracking Storm Interface (TSI), which is the visualization tool for an experimental short range Storm Detector network prototype in use on the region of Curitiba-Paraná, Brazil. The algorithms make use of Geopandas and clustering algorithms to locate storms, estimate centroids, determine dynamic storm displacement and compute parameters of thunderstorms like velocity, head edge of electrified cloud, Mean Stroke Rate, and tracking information, which are important parameters to improve the alert system which is subject of this research. To validate these algorithms we made use of a simple storm simulation, which enabled to test the system with huge amounts of data. We found that, for long duration storms, the tracking results, velocity and directions of the storms are coherent with the values of simulation and can be used to improve an alert system for the Storm Detector network. WAP can reach at least 75% of prediction efficiency when used 6 past WAP data, but can reach 98.86% efficiency when more data is available. We use storm dynamics to make improved alert predictions, reaching an efficiency of ~87%.
id TECPAR-1_7c3e53d479989a60d9f300753a115867
oai_identifier_str oai:scielo:S1516-89132021000200213
network_acronym_str TECPAR-1
network_name_str Brazilian Archives of Biology and Technology
repository_id_str
spelling TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrumlightningdetection efficiencylocation accuracyshort range detectorlightning risk alert systemAbstract During the last year the Group of Atmospheric Electricity Phenomena (FEA/UFPR) developed a short range lightning location network based on a sensor device called Storm Detector Network (SDN), along with a set of algorithms that enables to track storms, determining the Wide Area Probability (WAP) of lightning occurrence, risk level of lightning and Density Extension of the Flashes (DEF), using the geo-located lightning information as input data. These algorithms compose a Dashboard called Tracking Storm Interface (TSI), which is the visualization tool for an experimental short range Storm Detector network prototype in use on the region of Curitiba-Paraná, Brazil. The algorithms make use of Geopandas and clustering algorithms to locate storms, estimate centroids, determine dynamic storm displacement and compute parameters of thunderstorms like velocity, head edge of electrified cloud, Mean Stroke Rate, and tracking information, which are important parameters to improve the alert system which is subject of this research. To validate these algorithms we made use of a simple storm simulation, which enabled to test the system with huge amounts of data. We found that, for long duration storms, the tracking results, velocity and directions of the storms are coherent with the values of simulation and can be used to improve an alert system for the Storm Detector network. WAP can reach at least 75% of prediction efficiency when used 6 past WAP data, but can reach 98.86% efficiency when more data is available. We use storm dynamics to make improved alert predictions, reaching an efficiency of ~87%.Instituto de Tecnologia do Paraná - Tecpar2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132021000200213Brazilian Archives of Biology and Technology v.64 n.spe 2021reponame:Brazilian Archives of Biology and Technologyinstname:Instituto de Tecnologia do Paraná (Tecpar)instacron:TECPAR10.1590/1678-4324-75years-2021210137info:eu-repo/semantics/openAccessAdams,Augusto MathiasHeilmann,ArmandoAdams,Anselmo DanielDartora,César AugustoOdake Junior,Edson MasaoTertuliano Filho,HorácioSantos,Luis Augusto Cordeiro doseng2021-07-12T00:00:00Zoai:scielo:S1516-89132021000200213Revistahttps://www.scielo.br/j/babt/https://old.scielo.br/oai/scielo-oai.phpbabt@tecpar.br||babt@tecpar.br1678-43241516-8913opendoar:2021-07-12T00:00Brazilian Archives of Biology and Technology - Instituto de Tecnologia do Paraná (Tecpar)false
dc.title.none.fl_str_mv TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum
title TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum
spellingShingle TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum
Adams,Augusto Mathias
lightning
detection efficiency
location accuracy
short range detector
lightning risk alert system
title_short TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum
title_full TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum
title_fullStr TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum
title_full_unstemmed TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum
title_sort TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum
author Adams,Augusto Mathias
author_facet Adams,Augusto Mathias
Heilmann,Armando
Adams,Anselmo Daniel
Dartora,César Augusto
Odake Junior,Edson Masao
Tertuliano Filho,Horácio
Santos,Luis Augusto Cordeiro dos
author_role author
author2 Heilmann,Armando
Adams,Anselmo Daniel
Dartora,César Augusto
Odake Junior,Edson Masao
Tertuliano Filho,Horácio
Santos,Luis Augusto Cordeiro dos
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Adams,Augusto Mathias
Heilmann,Armando
Adams,Anselmo Daniel
Dartora,César Augusto
Odake Junior,Edson Masao
Tertuliano Filho,Horácio
Santos,Luis Augusto Cordeiro dos
dc.subject.por.fl_str_mv lightning
detection efficiency
location accuracy
short range detector
lightning risk alert system
topic lightning
detection efficiency
location accuracy
short range detector
lightning risk alert system
description Abstract During the last year the Group of Atmospheric Electricity Phenomena (FEA/UFPR) developed a short range lightning location network based on a sensor device called Storm Detector Network (SDN), along with a set of algorithms that enables to track storms, determining the Wide Area Probability (WAP) of lightning occurrence, risk level of lightning and Density Extension of the Flashes (DEF), using the geo-located lightning information as input data. These algorithms compose a Dashboard called Tracking Storm Interface (TSI), which is the visualization tool for an experimental short range Storm Detector network prototype in use on the region of Curitiba-Paraná, Brazil. The algorithms make use of Geopandas and clustering algorithms to locate storms, estimate centroids, determine dynamic storm displacement and compute parameters of thunderstorms like velocity, head edge of electrified cloud, Mean Stroke Rate, and tracking information, which are important parameters to improve the alert system which is subject of this research. To validate these algorithms we made use of a simple storm simulation, which enabled to test the system with huge amounts of data. We found that, for long duration storms, the tracking results, velocity and directions of the storms are coherent with the values of simulation and can be used to improve an alert system for the Storm Detector network. WAP can reach at least 75% of prediction efficiency when used 6 past WAP data, but can reach 98.86% efficiency when more data is available. We use storm dynamics to make improved alert predictions, reaching an efficiency of ~87%.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132021000200213
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132021000200213
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1678-4324-75years-2021210137
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto de Tecnologia do Paraná - Tecpar
publisher.none.fl_str_mv Instituto de Tecnologia do Paraná - Tecpar
dc.source.none.fl_str_mv Brazilian Archives of Biology and Technology v.64 n.spe 2021
reponame:Brazilian Archives of Biology and Technology
instname:Instituto de Tecnologia do Paraná (Tecpar)
instacron:TECPAR
instname_str Instituto de Tecnologia do Paraná (Tecpar)
instacron_str TECPAR
institution TECPAR
reponame_str Brazilian Archives of Biology and Technology
collection Brazilian Archives of Biology and Technology
repository.name.fl_str_mv Brazilian Archives of Biology and Technology - Instituto de Tecnologia do Paraná (Tecpar)
repository.mail.fl_str_mv babt@tecpar.br||babt@tecpar.br
_version_ 1750318280978989056