TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Archives of Biology and Technology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132021000200213 |
Resumo: | Abstract During the last year the Group of Atmospheric Electricity Phenomena (FEA/UFPR) developed a short range lightning location network based on a sensor device called Storm Detector Network (SDN), along with a set of algorithms that enables to track storms, determining the Wide Area Probability (WAP) of lightning occurrence, risk level of lightning and Density Extension of the Flashes (DEF), using the geo-located lightning information as input data. These algorithms compose a Dashboard called Tracking Storm Interface (TSI), which is the visualization tool for an experimental short range Storm Detector network prototype in use on the region of Curitiba-Paraná, Brazil. The algorithms make use of Geopandas and clustering algorithms to locate storms, estimate centroids, determine dynamic storm displacement and compute parameters of thunderstorms like velocity, head edge of electrified cloud, Mean Stroke Rate, and tracking information, which are important parameters to improve the alert system which is subject of this research. To validate these algorithms we made use of a simple storm simulation, which enabled to test the system with huge amounts of data. We found that, for long duration storms, the tracking results, velocity and directions of the storms are coherent with the values of simulation and can be used to improve an alert system for the Storm Detector network. WAP can reach at least 75% of prediction efficiency when used 6 past WAP data, but can reach 98.86% efficiency when more data is available. We use storm dynamics to make improved alert predictions, reaching an efficiency of ~87%. |
id |
TECPAR-1_7c3e53d479989a60d9f300753a115867 |
---|---|
oai_identifier_str |
oai:scielo:S1516-89132021000200213 |
network_acronym_str |
TECPAR-1 |
network_name_str |
Brazilian Archives of Biology and Technology |
repository_id_str |
|
spelling |
TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrumlightningdetection efficiencylocation accuracyshort range detectorlightning risk alert systemAbstract During the last year the Group of Atmospheric Electricity Phenomena (FEA/UFPR) developed a short range lightning location network based on a sensor device called Storm Detector Network (SDN), along with a set of algorithms that enables to track storms, determining the Wide Area Probability (WAP) of lightning occurrence, risk level of lightning and Density Extension of the Flashes (DEF), using the geo-located lightning information as input data. These algorithms compose a Dashboard called Tracking Storm Interface (TSI), which is the visualization tool for an experimental short range Storm Detector network prototype in use on the region of Curitiba-Paraná, Brazil. The algorithms make use of Geopandas and clustering algorithms to locate storms, estimate centroids, determine dynamic storm displacement and compute parameters of thunderstorms like velocity, head edge of electrified cloud, Mean Stroke Rate, and tracking information, which are important parameters to improve the alert system which is subject of this research. To validate these algorithms we made use of a simple storm simulation, which enabled to test the system with huge amounts of data. We found that, for long duration storms, the tracking results, velocity and directions of the storms are coherent with the values of simulation and can be used to improve an alert system for the Storm Detector network. WAP can reach at least 75% of prediction efficiency when used 6 past WAP data, but can reach 98.86% efficiency when more data is available. We use storm dynamics to make improved alert predictions, reaching an efficiency of ~87%.Instituto de Tecnologia do Paraná - Tecpar2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132021000200213Brazilian Archives of Biology and Technology v.64 n.spe 2021reponame:Brazilian Archives of Biology and Technologyinstname:Instituto de Tecnologia do Paraná (Tecpar)instacron:TECPAR10.1590/1678-4324-75years-2021210137info:eu-repo/semantics/openAccessAdams,Augusto MathiasHeilmann,ArmandoAdams,Anselmo DanielDartora,César AugustoOdake Junior,Edson MasaoTertuliano Filho,HorácioSantos,Luis Augusto Cordeiro doseng2021-07-12T00:00:00Zoai:scielo:S1516-89132021000200213Revistahttps://www.scielo.br/j/babt/https://old.scielo.br/oai/scielo-oai.phpbabt@tecpar.br||babt@tecpar.br1678-43241516-8913opendoar:2021-07-12T00:00Brazilian Archives of Biology and Technology - Instituto de Tecnologia do Paraná (Tecpar)false |
dc.title.none.fl_str_mv |
TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum |
title |
TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum |
spellingShingle |
TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum Adams,Augusto Mathias lightning detection efficiency location accuracy short range detector lightning risk alert system |
title_short |
TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum |
title_full |
TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum |
title_fullStr |
TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum |
title_full_unstemmed |
TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum |
title_sort |
TrackingStorm: Visualization Tool for a Storm Detector Network (SDN) in the LF Spectrum |
author |
Adams,Augusto Mathias |
author_facet |
Adams,Augusto Mathias Heilmann,Armando Adams,Anselmo Daniel Dartora,César Augusto Odake Junior,Edson Masao Tertuliano Filho,Horácio Santos,Luis Augusto Cordeiro dos |
author_role |
author |
author2 |
Heilmann,Armando Adams,Anselmo Daniel Dartora,César Augusto Odake Junior,Edson Masao Tertuliano Filho,Horácio Santos,Luis Augusto Cordeiro dos |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Adams,Augusto Mathias Heilmann,Armando Adams,Anselmo Daniel Dartora,César Augusto Odake Junior,Edson Masao Tertuliano Filho,Horácio Santos,Luis Augusto Cordeiro dos |
dc.subject.por.fl_str_mv |
lightning detection efficiency location accuracy short range detector lightning risk alert system |
topic |
lightning detection efficiency location accuracy short range detector lightning risk alert system |
description |
Abstract During the last year the Group of Atmospheric Electricity Phenomena (FEA/UFPR) developed a short range lightning location network based on a sensor device called Storm Detector Network (SDN), along with a set of algorithms that enables to track storms, determining the Wide Area Probability (WAP) of lightning occurrence, risk level of lightning and Density Extension of the Flashes (DEF), using the geo-located lightning information as input data. These algorithms compose a Dashboard called Tracking Storm Interface (TSI), which is the visualization tool for an experimental short range Storm Detector network prototype in use on the region of Curitiba-Paraná, Brazil. The algorithms make use of Geopandas and clustering algorithms to locate storms, estimate centroids, determine dynamic storm displacement and compute parameters of thunderstorms like velocity, head edge of electrified cloud, Mean Stroke Rate, and tracking information, which are important parameters to improve the alert system which is subject of this research. To validate these algorithms we made use of a simple storm simulation, which enabled to test the system with huge amounts of data. We found that, for long duration storms, the tracking results, velocity and directions of the storms are coherent with the values of simulation and can be used to improve an alert system for the Storm Detector network. WAP can reach at least 75% of prediction efficiency when used 6 past WAP data, but can reach 98.86% efficiency when more data is available. We use storm dynamics to make improved alert predictions, reaching an efficiency of ~87%. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132021000200213 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132021000200213 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-4324-75years-2021210137 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto de Tecnologia do Paraná - Tecpar |
publisher.none.fl_str_mv |
Instituto de Tecnologia do Paraná - Tecpar |
dc.source.none.fl_str_mv |
Brazilian Archives of Biology and Technology v.64 n.spe 2021 reponame:Brazilian Archives of Biology and Technology instname:Instituto de Tecnologia do Paraná (Tecpar) instacron:TECPAR |
instname_str |
Instituto de Tecnologia do Paraná (Tecpar) |
instacron_str |
TECPAR |
institution |
TECPAR |
reponame_str |
Brazilian Archives of Biology and Technology |
collection |
Brazilian Archives of Biology and Technology |
repository.name.fl_str_mv |
Brazilian Archives of Biology and Technology - Instituto de Tecnologia do Paraná (Tecpar) |
repository.mail.fl_str_mv |
babt@tecpar.br||babt@tecpar.br |
_version_ |
1750318280978989056 |