Genetic Structure and Mating System of Manilkara huberi (Ducke) a. chev., a heavily logged amazonian timber species
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UCB |
Texto Completo: | http://twingo.ucb.br:8080/jspui/handle/10869/510 https://repositorio.ucb.br:9443/jspui/handle/123456789/7720 |
Resumo: | In this work, we report on the population genetic structure of the endangered tree species Manilkara huberi, an Amazonian tree species intensely exploited due to the high density and resistance of its wood. We investigated the patterns of spatial distribution, genetic structure, and mating system using 7 icrosatellite loci and here discuss the consequences for conservation and management of the species. To examine the population genetic structure, 481 adult trees and 810 seedlings were sampled from an area of 200 ha from a natural population in FLONA Tapajo´s, PA, Brazil. We found relatively high and consistent inbreeding levels (intrapopulation fixation index [f] 0.175 and 0.240) and a significant spatial genetic structure up to a radius of approximately 300 m, most likely due to a limited seed and pollen flow. The multilocus (tm) population outcrossing rate was high (0.995), suggesting that the species is predominantly allogamous with a pollen flow restricted to 47 m. These results suggest that M. huberi is spatially structured, consistent with a model of isolation by distance. Fragmentation may therefore cause the loss of subpopulations, suggesting that management programs for production and conservation should include large areas. The genetic data also revealed that for ex situ conservation, seeds should be collected from more than 175 maternal trees, in order to keep an effective population size of 500. Furthermore, as the species is widely distributed across the Amazon Forest, samples should include several populations in order to represent the highest genetic diversity possible. These results provide a blueprint to guide the production and conservation management policies of this valuable timber species. |
id |
UCB-2_2947b63973784cdc9b1bb955bc790251 |
---|---|
oai_identifier_str |
oai:200.214.135.189:123456789/7720 |
network_acronym_str |
UCB-2 |
network_name_str |
Repositório Institucional da UCB |
spelling |
Azevedo, Vânia C. R.Kanashiro, MiltonCiampi, Ana Y.Grattapaglia, Dario2016-10-10T03:52:29Z2016-10-10T03:52:29Z2007AZEVEDO, Vânia C R. et al. Genetic structure and mating system of manilkara huberi (Ducke) a. chev. a Heavily Logged Amazonian Timber Species.. Journal of Heredity, v. 97, n.7, p. 646–654, 2007.221503http://twingo.ucb.br:8080/jspui/handle/10869/510https://repositorio.ucb.br:9443/jspui/handle/123456789/7720In this work, we report on the population genetic structure of the endangered tree species Manilkara huberi, an Amazonian tree species intensely exploited due to the high density and resistance of its wood. We investigated the patterns of spatial distribution, genetic structure, and mating system using 7 icrosatellite loci and here discuss the consequences for conservation and management of the species. To examine the population genetic structure, 481 adult trees and 810 seedlings were sampled from an area of 200 ha from a natural population in FLONA Tapajo´s, PA, Brazil. We found relatively high and consistent inbreeding levels (intrapopulation fixation index [f] 0.175 and 0.240) and a significant spatial genetic structure up to a radius of approximately 300 m, most likely due to a limited seed and pollen flow. The multilocus (tm) population outcrossing rate was high (0.995), suggesting that the species is predominantly allogamous with a pollen flow restricted to 47 m. These results suggest that M. huberi is spatially structured, consistent with a model of isolation by distance. Fragmentation may therefore cause the loss of subpopulations, suggesting that management programs for production and conservation should include large areas. The genetic data also revealed that for ex situ conservation, seeds should be collected from more than 175 maternal trees, in order to keep an effective population size of 500. Furthermore, as the species is widely distributed across the Amazon Forest, samples should include several populations in order to represent the highest genetic diversity possible. These results provide a blueprint to guide the production and conservation management policies of this valuable timber species.Made available in DSpace on 2016-10-10T03:52:29Z (GMT). No. of bitstreams: 5 Genetic Structure Mating System and Long-Distance Gene Flow....pdf: 192228 bytes, checksum: 78f554358505c319f6574a9501eeba6e (MD5) license_url: 52 bytes, checksum: 2f32edb9c19a57e928372a33fd08dba5 (MD5) license_text: 24372 bytes, checksum: 94b0a37ff5ec51de8c55507bff4a7ff9 (MD5) license_rdf: 24623 bytes, checksum: 378d22d8fe50e084ee2f354be78cbe62 (MD5) license.txt: 1887 bytes, checksum: 445d1980f282ec865917de35a4c622f6 (MD5) Previous issue date: 2007SimPublicadoTextoRestrito UCBinfo:eu-repo/semantics/openAccessGenética de populaçõe de espécies arbóreasMarcadores molecularesGenetic Structure and Mating System of Manilkara huberi (Ducke) a. chev., a heavily logged amazonian timber speciesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleJournal of Heredityengreponame:Repositório Institucional da UCBinstname:Universidade Católica de Brasília (UCB)instacron:UCBORIGINALGenetic Structure Mating System and Long-Distance Gene Flow....pdfapplication/pdf192228https://200.214.135.178:9443/jspui/bitstream/123456789/7720/1/Genetic%20Structure%20Mating%20System%20and%20Long-Distance%20Gene%20Flow....pdf78f554358505c319f6574a9501eeba6eMD51CC-LICENSElicense_urlapplication/octet-stream52https://200.214.135.178:9443/jspui/bitstream/123456789/7720/2/license_url2f32edb9c19a57e928372a33fd08dba5MD52license_textapplication/octet-stream24372https://200.214.135.178:9443/jspui/bitstream/123456789/7720/3/license_text94b0a37ff5ec51de8c55507bff4a7ff9MD53license_rdfapplication/octet-stream24623https://200.214.135.178:9443/jspui/bitstream/123456789/7720/4/license_rdf378d22d8fe50e084ee2f354be78cbe62MD54LICENSElicense.txttext/plain1887https://200.214.135.178:9443/jspui/bitstream/123456789/7720/5/license.txt445d1980f282ec865917de35a4c622f6MD55TEXTGenetic Structure Mating System and Long-Distance Gene Flow....pdf.txtGenetic Structure Mating System and Long-Distance Gene Flow....pdf.txtExtracted texttext/plain39399https://200.214.135.178:9443/jspui/bitstream/123456789/7720/6/Genetic%20Structure%20Mating%20System%20and%20Long-Distance%20Gene%20Flow....pdf.txtc1e5b5457c52e0feb74c1c678e0da0eaMD56123456789/77202017-01-17 15:10:22.584TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkFvIGFzc2luYXIgZSBlbnRyZWdhciBlc3RhIGxpY2Vuw6dhLCBvL2EgU3IuL1NyYS4gKGF1dG9yIG91IGRldGVudG9yCmRvcyBkaXJlaXRvcyBkZSBhdXRvcik6CgphKSBDb25jZWRlIGEgVW5pdmVyc2lkYWRlIENhdMOzbGljYSBkZSBCcmFzw61saWEgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvCiBkZSByZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gZW0gYmFpeG8pLGNvbXVuaWNhciBlL291CiBkaXN0cmlidWlyIG8gZG9jdW1lbnRvIGVudHJlZ3VlIChpbmNsdWluZG8gbyByZXN1bW8vYWJzdHJhY3QpIGVtCiBmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLiAKCmIpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUKIGRldMOpbSBvIGRpcmVpdG8gZGUgY29uY2VkZXJvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gCiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvCiBsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UKIGVudGlkYWRlLiAKCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwogZGlyZWl0b3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIG9idGV2ZSBhdXRvcml6YcOnw6NvIGRvIGRldGVudG9yIGRvcwogZGlyZWl0b3MgZGUgYXV0b3IgcGFyYSBjb25jZWRlciBhIFVuaXZlcnNpZGFkZSBDYXTDs2xpY2EgZGUgQnJhc8OtbGlhCiBvcyBkaXJlaXRvcyByZXF1ZXJpZG9zIHBvciBlc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zCiBkaXJlaXRvcyBzw6NvIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvCiBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLiAKClNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIGJhc2VhZG8gZW0gdHJhYmFsaG8gZmluYW5jaWFkbyBvdSBhcG9pYWRvCiBwb3Igb3V0cmEgaW5zdGl0dWnDp8OjbyBxdWUgbsOjbyBhIFVuaXZlcnNpZGFkZSBDYXTDs2xpY2EgZGUgQnJhc8OtbGlhLAogZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2bwogY29udHJhdG8gb3UgYWNvcmRvLiAKCkEgVW5pdmVyc2lkYWRlIENhdMOzbGljYSBkZSBCcmFzw61saWEgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1CiAodm9zc28pIG5vbWUocykgY29tbyBvKHMpIGF1dG9yKGVzKSBvdSBkZXRlbnRvcihlcylkb3MgZGlyZWl0b3MgZG8KIGRvY3VtZW50byBlbnRyZWd1ZSwgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRhcwogcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbsOnYQoKw4kgbmVjZXNzw6FyaW8gcXVlIGNvbmNvcmRlIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAogYW50ZXMgZG8gc2V1IGRvY3VtZW50byBwb2RlciBhcGFyZWNlciBuYSBSZXBvc2l0w7NyaW8gZGEgVW5pdmVyc2lkYWRlCiBDYXTDs2xpY2EgZGUgQnJhc8OtbGlhLiBQb3IgZmF2b3IsIGxlaWEgYSBsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbwogcHJldGVuZGEgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0gY29udGF0byBwb3IgY29ycmVpbyBlbGV0csO0bmljbwogLSBjZGlAdWNiLmJyIG91IHRlbGVmb25lIC0gKDB4eDYxKSAzMzU2LTkwMjkKRepositório de Publicaçõeshttps://repositorio.ucb.br:9443/jspui/ |
dc.title.pt_BR.fl_str_mv |
Genetic Structure and Mating System of Manilkara huberi (Ducke) a. chev., a heavily logged amazonian timber species |
title |
Genetic Structure and Mating System of Manilkara huberi (Ducke) a. chev., a heavily logged amazonian timber species |
spellingShingle |
Genetic Structure and Mating System of Manilkara huberi (Ducke) a. chev., a heavily logged amazonian timber species Azevedo, Vânia C. R. Genética de populaçõe de espécies arbóreas Marcadores moleculares |
title_short |
Genetic Structure and Mating System of Manilkara huberi (Ducke) a. chev., a heavily logged amazonian timber species |
title_full |
Genetic Structure and Mating System of Manilkara huberi (Ducke) a. chev., a heavily logged amazonian timber species |
title_fullStr |
Genetic Structure and Mating System of Manilkara huberi (Ducke) a. chev., a heavily logged amazonian timber species |
title_full_unstemmed |
Genetic Structure and Mating System of Manilkara huberi (Ducke) a. chev., a heavily logged amazonian timber species |
title_sort |
Genetic Structure and Mating System of Manilkara huberi (Ducke) a. chev., a heavily logged amazonian timber species |
author |
Azevedo, Vânia C. R. |
author_facet |
Azevedo, Vânia C. R. Kanashiro, Milton Ciampi, Ana Y. Grattapaglia, Dario |
author_role |
author |
author2 |
Kanashiro, Milton Ciampi, Ana Y. Grattapaglia, Dario |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Azevedo, Vânia C. R. Kanashiro, Milton Ciampi, Ana Y. Grattapaglia, Dario |
dc.subject.por.fl_str_mv |
Genética de populaçõe de espécies arbóreas Marcadores moleculares |
topic |
Genética de populaçõe de espécies arbóreas Marcadores moleculares |
dc.description.abstract.por.fl_txt_mv |
In this work, we report on the population genetic structure of the endangered tree species Manilkara huberi, an Amazonian tree species intensely exploited due to the high density and resistance of its wood. We investigated the patterns of spatial distribution, genetic structure, and mating system using 7 icrosatellite loci and here discuss the consequences for conservation and management of the species. To examine the population genetic structure, 481 adult trees and 810 seedlings were sampled from an area of 200 ha from a natural population in FLONA Tapajo´s, PA, Brazil. We found relatively high and consistent inbreeding levels (intrapopulation fixation index [f] 0.175 and 0.240) and a significant spatial genetic structure up to a radius of approximately 300 m, most likely due to a limited seed and pollen flow. The multilocus (tm) population outcrossing rate was high (0.995), suggesting that the species is predominantly allogamous with a pollen flow restricted to 47 m. These results suggest that M. huberi is spatially structured, consistent with a model of isolation by distance. Fragmentation may therefore cause the loss of subpopulations, suggesting that management programs for production and conservation should include large areas. The genetic data also revealed that for ex situ conservation, seeds should be collected from more than 175 maternal trees, in order to keep an effective population size of 500. Furthermore, as the species is widely distributed across the Amazon Forest, samples should include several populations in order to represent the highest genetic diversity possible. These results provide a blueprint to guide the production and conservation management policies of this valuable timber species. |
dc.description.version.pt_BR.fl_txt_mv |
Sim |
dc.description.status.pt_BR.fl_txt_mv |
Publicado |
description |
In this work, we report on the population genetic structure of the endangered tree species Manilkara huberi, an Amazonian tree species intensely exploited due to the high density and resistance of its wood. We investigated the patterns of spatial distribution, genetic structure, and mating system using 7 icrosatellite loci and here discuss the consequences for conservation and management of the species. To examine the population genetic structure, 481 adult trees and 810 seedlings were sampled from an area of 200 ha from a natural population in FLONA Tapajo´s, PA, Brazil. We found relatively high and consistent inbreeding levels (intrapopulation fixation index [f] 0.175 and 0.240) and a significant spatial genetic structure up to a radius of approximately 300 m, most likely due to a limited seed and pollen flow. The multilocus (tm) population outcrossing rate was high (0.995), suggesting that the species is predominantly allogamous with a pollen flow restricted to 47 m. These results suggest that M. huberi is spatially structured, consistent with a model of isolation by distance. Fragmentation may therefore cause the loss of subpopulations, suggesting that management programs for production and conservation should include large areas. The genetic data also revealed that for ex situ conservation, seeds should be collected from more than 175 maternal trees, in order to keep an effective population size of 500. Furthermore, as the species is widely distributed across the Amazon Forest, samples should include several populations in order to represent the highest genetic diversity possible. These results provide a blueprint to guide the production and conservation management policies of this valuable timber species. |
publishDate |
2007 |
dc.date.issued.fl_str_mv |
2007 |
dc.date.accessioned.fl_str_mv |
2016-10-10T03:52:29Z |
dc.date.available.fl_str_mv |
2016-10-10T03:52:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
status_str |
publishedVersion |
format |
article |
dc.identifier.citation.fl_str_mv |
AZEVEDO, Vânia C R. et al. Genetic structure and mating system of manilkara huberi (Ducke) a. chev. a Heavily Logged Amazonian Timber Species.. Journal of Heredity, v. 97, n.7, p. 646–654, 2007. |
dc.identifier.uri.fl_str_mv |
http://twingo.ucb.br:8080/jspui/handle/10869/510 https://repositorio.ucb.br:9443/jspui/handle/123456789/7720 |
dc.identifier.issn.none.fl_str_mv |
221503 |
identifier_str_mv |
AZEVEDO, Vânia C R. et al. Genetic structure and mating system of manilkara huberi (Ducke) a. chev. a Heavily Logged Amazonian Timber Species.. Journal of Heredity, v. 97, n.7, p. 646–654, 2007. 221503 |
url |
http://twingo.ucb.br:8080/jspui/handle/10869/510 https://repositorio.ucb.br:9443/jspui/handle/123456789/7720 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Restrito UCB info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Restrito UCB |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Texto |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UCB instname:Universidade Católica de Brasília (UCB) instacron:UCB |
instname_str |
Universidade Católica de Brasília (UCB) |
instacron_str |
UCB |
institution |
UCB |
reponame_str |
Repositório Institucional da UCB |
collection |
Repositório Institucional da UCB |
bitstream.url.fl_str_mv |
https://200.214.135.178:9443/jspui/bitstream/123456789/7720/1/Genetic%20Structure%20Mating%20System%20and%20Long-Distance%20Gene%20Flow....pdf https://200.214.135.178:9443/jspui/bitstream/123456789/7720/2/license_url https://200.214.135.178:9443/jspui/bitstream/123456789/7720/3/license_text https://200.214.135.178:9443/jspui/bitstream/123456789/7720/4/license_rdf https://200.214.135.178:9443/jspui/bitstream/123456789/7720/5/license.txt https://200.214.135.178:9443/jspui/bitstream/123456789/7720/6/Genetic%20Structure%20Mating%20System%20and%20Long-Distance%20Gene%20Flow....pdf.txt |
bitstream.checksum.fl_str_mv |
78f554358505c319f6574a9501eeba6e 2f32edb9c19a57e928372a33fd08dba5 94b0a37ff5ec51de8c55507bff4a7ff9 378d22d8fe50e084ee2f354be78cbe62 445d1980f282ec865917de35a4c622f6 c1e5b5457c52e0feb74c1c678e0da0ea |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1724829830409617408 |