Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers
Autor(a) principal: | |
---|---|
Data de Publicação: | 1994 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UCB |
Texto Completo: | http://twingo.ucb.br:8080/jspui/handle/10869/426 https://repositorio.ucb.br:9443/jspui/handle/123456789/7581 |
Resumo: | We have used a “two-way pseudo-testcross” mapping strategy in combination with the random amplified polymorhic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many singledose RAPD markers will be heterozygous in one parent, null in theother and therefore segregate 1:l in their F, progeny followinga testcross configuration. Meiosis and gametic segregation iena ch individual can be direcatlnyd efficiently analyzed usingR APD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, 0 = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) ( n = 11 in Eucalyptus). Framework maps ordered with a likelihood support ?1000:1 were assembled covering 95% of the estimated genome size inb oth individuals. Characterizationo f genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage mapfso r any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexuallrye producing living organism. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficieant the intraspecific level and increasingly so with crosseso f genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps ina ny forest species opens the way for a shift fromt he paradigm of a species index map ttoh e heterodox proposaol f constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding. |
id |
UCB-2_2d408fd136b154b411b1073712468bb4 |
---|---|
oai_identifier_str |
oai:200.214.135.189:123456789/7581 |
network_acronym_str |
UCB-2 |
network_name_str |
Repositório Institucional da UCB |
spelling |
Grattapaglia, DarioSederoff, Ronald2016-10-10T03:51:57Z2016-10-10T03:51:57Z1994GRATTAPAGLIA, Dario; SEDEROFF, Ronald. Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetic, v. 137, n.4, p. 1121-1137,1994.0016-6731http://twingo.ucb.br:8080/jspui/handle/10869/426https://repositorio.ucb.br:9443/jspui/handle/123456789/7581We have used a “two-way pseudo-testcross” mapping strategy in combination with the random amplified polymorhic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many singledose RAPD markers will be heterozygous in one parent, null in theother and therefore segregate 1:l in their F, progeny followinga testcross configuration. Meiosis and gametic segregation iena ch individual can be direcatlnyd efficiently analyzed usingR APD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, 0 = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) ( n = 11 in Eucalyptus). Framework maps ordered with a likelihood support ?1000:1 were assembled covering 95% of the estimated genome size inb oth individuals. Characterizationo f genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage mapfso r any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexuallrye producing living organism. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficieant the intraspecific level and increasingly so with crosseso f genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps ina ny forest species opens the way for a shift fromt he paradigm of a species index map ttoh e heterodox proposaol f constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding.Made available in DSpace on 2016-10-10T03:51:57Z (GMT). No. of bitstreams: 5 Genetic Linkage Maps of Eucalyptus grandis and Eucalyptus urophylla Using.PDF: 6111589 bytes, checksum: 74a1c56016c3c0d227bab24eb5dce175 (MD5) license_url: 52 bytes, checksum: 2f32edb9c19a57e928372a33fd08dba5 (MD5) license_text: 24259 bytes, checksum: f1f24f769b03eb8f9cd3f53c1090841c (MD5) license_rdf: 24658 bytes, checksum: 9d3847733d3c0b59c7c89a1d40d3d240 (MD5) license.txt: 1887 bytes, checksum: 445d1980f282ec865917de35a4c622f6 (MD5) Previous issue date: 1994SimTextoRAPDPseudo-testcrossEucalyptusQTLVegetative propagationGenetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleGeneticsinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UCBinstname:Universidade Católica de Brasília (UCB)instacron:UCBORIGINALGenetic Linkage Maps of Eucalyptus grandis and Eucalyptus urophylla Using.PDFapplication/pdf6111589https://200.214.135.178:9443/jspui/bitstream/123456789/7581/1/Genetic%20Linkage%20Maps%20of%20Eucalyptus%20grandis%20and%20Eucalyptus%20urophylla%20Using.PDF74a1c56016c3c0d227bab24eb5dce175MD51CC-LICENSElicense_urlapplication/octet-stream52https://200.214.135.178:9443/jspui/bitstream/123456789/7581/2/license_url2f32edb9c19a57e928372a33fd08dba5MD52license_textapplication/octet-stream24259https://200.214.135.178:9443/jspui/bitstream/123456789/7581/3/license_textf1f24f769b03eb8f9cd3f53c1090841cMD53license_rdfapplication/octet-stream24658https://200.214.135.178:9443/jspui/bitstream/123456789/7581/4/license_rdf9d3847733d3c0b59c7c89a1d40d3d240MD54LICENSElicense.txttext/plain1887https://200.214.135.178:9443/jspui/bitstream/123456789/7581/5/license.txt445d1980f282ec865917de35a4c622f6MD55TEXTGenetic Linkage Maps of Eucalyptus grandis and Eucalyptus urophylla Using.PDF.txtGenetic Linkage Maps of Eucalyptus grandis and Eucalyptus urophylla Using.PDF.txtExtracted texttext/plain85107https://200.214.135.178:9443/jspui/bitstream/123456789/7581/6/Genetic%20Linkage%20Maps%20of%20Eucalyptus%20grandis%20and%20Eucalyptus%20urophylla%20Using.PDF.txt91b0701d526da600d9f5389ee388a6adMD56123456789/75812017-01-17 15:08:59.773TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkFvIGFzc2luYXIgZSBlbnRyZWdhciBlc3RhIGxpY2Vuw6dhLCBvL2EgU3IuL1NyYS4gKGF1dG9yIG91IGRldGVudG9yCmRvcyBkaXJlaXRvcyBkZSBhdXRvcik6CgphKSBDb25jZWRlIGEgVW5pdmVyc2lkYWRlIENhdMOzbGljYSBkZSBCcmFzw61saWEgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvCiBkZSByZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gZW0gYmFpeG8pLGNvbXVuaWNhciBlL291CiBkaXN0cmlidWlyIG8gZG9jdW1lbnRvIGVudHJlZ3VlIChpbmNsdWluZG8gbyByZXN1bW8vYWJzdHJhY3QpIGVtCiBmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLiAKCmIpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUKIGRldMOpbSBvIGRpcmVpdG8gZGUgY29uY2VkZXJvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gCiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvCiBsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UKIGVudGlkYWRlLiAKCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwogZGlyZWl0b3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIG9idGV2ZSBhdXRvcml6YcOnw6NvIGRvIGRldGVudG9yIGRvcwogZGlyZWl0b3MgZGUgYXV0b3IgcGFyYSBjb25jZWRlciBhIFVuaXZlcnNpZGFkZSBDYXTDs2xpY2EgZGUgQnJhc8OtbGlhCiBvcyBkaXJlaXRvcyByZXF1ZXJpZG9zIHBvciBlc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zCiBkaXJlaXRvcyBzw6NvIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvCiBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLiAKClNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIGJhc2VhZG8gZW0gdHJhYmFsaG8gZmluYW5jaWFkbyBvdSBhcG9pYWRvCiBwb3Igb3V0cmEgaW5zdGl0dWnDp8OjbyBxdWUgbsOjbyBhIFVuaXZlcnNpZGFkZSBDYXTDs2xpY2EgZGUgQnJhc8OtbGlhLAogZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2bwogY29udHJhdG8gb3UgYWNvcmRvLiAKCkEgVW5pdmVyc2lkYWRlIENhdMOzbGljYSBkZSBCcmFzw61saWEgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1CiAodm9zc28pIG5vbWUocykgY29tbyBvKHMpIGF1dG9yKGVzKSBvdSBkZXRlbnRvcihlcylkb3MgZGlyZWl0b3MgZG8KIGRvY3VtZW50byBlbnRyZWd1ZSwgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRhcwogcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbsOnYQoKw4kgbmVjZXNzw6FyaW8gcXVlIGNvbmNvcmRlIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAogYW50ZXMgZG8gc2V1IGRvY3VtZW50byBwb2RlciBhcGFyZWNlciBuYSBSZXBvc2l0w7NyaW8gZGEgVW5pdmVyc2lkYWRlCiBDYXTDs2xpY2EgZGUgQnJhc8OtbGlhLiBQb3IgZmF2b3IsIGxlaWEgYSBsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbwogcHJldGVuZGEgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0gY29udGF0byBwb3IgY29ycmVpbyBlbGV0csO0bmljbwogLSBjZGlAdWNiLmJyIG91IHRlbGVmb25lIC0gKDB4eDYxKSAzMzU2LTkwMjkKRepositório de Publicaçõeshttps://repositorio.ucb.br:9443/jspui/ |
dc.title.pt_BR.fl_str_mv |
Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers |
title |
Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers |
spellingShingle |
Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers Grattapaglia, Dario RAPD Pseudo-testcross Eucalyptus QTL Vegetative propagation |
title_short |
Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers |
title_full |
Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers |
title_fullStr |
Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers |
title_full_unstemmed |
Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers |
title_sort |
Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers |
author |
Grattapaglia, Dario |
author_facet |
Grattapaglia, Dario Sederoff, Ronald |
author_role |
author |
author2 |
Sederoff, Ronald |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Grattapaglia, Dario Sederoff, Ronald |
dc.subject.por.fl_str_mv |
RAPD Pseudo-testcross Eucalyptus QTL Vegetative propagation |
topic |
RAPD Pseudo-testcross Eucalyptus QTL Vegetative propagation |
dc.description.abstract.por.fl_txt_mv |
We have used a “two-way pseudo-testcross” mapping strategy in combination with the random amplified polymorhic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many singledose RAPD markers will be heterozygous in one parent, null in theother and therefore segregate 1:l in their F, progeny followinga testcross configuration. Meiosis and gametic segregation iena ch individual can be direcatlnyd efficiently analyzed usingR APD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, 0 = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) ( n = 11 in Eucalyptus). Framework maps ordered with a likelihood support ?1000:1 were assembled covering 95% of the estimated genome size inb oth individuals. Characterizationo f genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage mapfso r any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexuallrye producing living organism. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficieant the intraspecific level and increasingly so with crosseso f genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps ina ny forest species opens the way for a shift fromt he paradigm of a species index map ttoh e heterodox proposaol f constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding. |
dc.description.version.pt_BR.fl_txt_mv |
Sim |
description |
We have used a “two-way pseudo-testcross” mapping strategy in combination with the random amplified polymorhic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many singledose RAPD markers will be heterozygous in one parent, null in theother and therefore segregate 1:l in their F, progeny followinga testcross configuration. Meiosis and gametic segregation iena ch individual can be direcatlnyd efficiently analyzed usingR APD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, 0 = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) ( n = 11 in Eucalyptus). Framework maps ordered with a likelihood support ?1000:1 were assembled covering 95% of the estimated genome size inb oth individuals. Characterizationo f genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage mapfso r any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexuallrye producing living organism. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficieant the intraspecific level and increasingly so with crosseso f genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps ina ny forest species opens the way for a shift fromt he paradigm of a species index map ttoh e heterodox proposaol f constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding. |
publishDate |
1994 |
dc.date.issued.fl_str_mv |
1994 |
dc.date.accessioned.fl_str_mv |
2016-10-10T03:51:57Z |
dc.date.available.fl_str_mv |
2016-10-10T03:51:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
status_str |
publishedVersion |
format |
article |
dc.identifier.citation.fl_str_mv |
GRATTAPAGLIA, Dario; SEDEROFF, Ronald. Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetic, v. 137, n.4, p. 1121-1137,1994. |
dc.identifier.uri.fl_str_mv |
http://twingo.ucb.br:8080/jspui/handle/10869/426 https://repositorio.ucb.br:9443/jspui/handle/123456789/7581 |
dc.identifier.issn.none.fl_str_mv |
0016-6731 |
identifier_str_mv |
GRATTAPAGLIA, Dario; SEDEROFF, Ronald. Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetic, v. 137, n.4, p. 1121-1137,1994. 0016-6731 |
url |
http://twingo.ucb.br:8080/jspui/handle/10869/426 https://repositorio.ucb.br:9443/jspui/handle/123456789/7581 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Texto |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UCB instname:Universidade Católica de Brasília (UCB) instacron:UCB |
instname_str |
Universidade Católica de Brasília (UCB) |
instacron_str |
UCB |
institution |
UCB |
reponame_str |
Repositório Institucional da UCB |
collection |
Repositório Institucional da UCB |
bitstream.url.fl_str_mv |
https://200.214.135.178:9443/jspui/bitstream/123456789/7581/1/Genetic%20Linkage%20Maps%20of%20Eucalyptus%20grandis%20and%20Eucalyptus%20urophylla%20Using.PDF https://200.214.135.178:9443/jspui/bitstream/123456789/7581/2/license_url https://200.214.135.178:9443/jspui/bitstream/123456789/7581/3/license_text https://200.214.135.178:9443/jspui/bitstream/123456789/7581/4/license_rdf https://200.214.135.178:9443/jspui/bitstream/123456789/7581/5/license.txt https://200.214.135.178:9443/jspui/bitstream/123456789/7581/6/Genetic%20Linkage%20Maps%20of%20Eucalyptus%20grandis%20and%20Eucalyptus%20urophylla%20Using.PDF.txt |
bitstream.checksum.fl_str_mv |
74a1c56016c3c0d227bab24eb5dce175 2f32edb9c19a57e928372a33fd08dba5 f1f24f769b03eb8f9cd3f53c1090841c 9d3847733d3c0b59c7c89a1d40d3d240 445d1980f282ec865917de35a4c622f6 91b0701d526da600d9f5389ee388a6ad |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1724829829150277632 |