Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers

Detalhes bibliográficos
Autor(a) principal: Grattapaglia, Dario
Data de Publicação: 1994
Outros Autores: Sederoff, Ronald
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UCB
Texto Completo: http://twingo.ucb.br:8080/jspui/handle/10869/426
https://repositorio.ucb.br:9443/jspui/handle/123456789/7581
Resumo: We have used a “two-way pseudo-testcross” mapping strategy in combination with the random amplified polymorhic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many singledose RAPD markers will be heterozygous in one parent, null in theother and therefore segregate 1:l in their F, progeny followinga testcross configuration. Meiosis and gametic segregation iena ch individual can be direcatlnyd efficiently analyzed usingR APD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, 0 = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) ( n = 11 in Eucalyptus). Framework maps ordered with a likelihood support ?1000:1 were assembled covering 95% of the estimated genome size inb oth individuals. Characterizationo f genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage mapfso r any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexuallrye producing living organism. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficieant the intraspecific level and increasingly so with crosseso f genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps ina ny forest species opens the way for a shift fromt he paradigm of a species index map ttoh e heterodox proposaol f constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding.
id UCB-2_2d408fd136b154b411b1073712468bb4
oai_identifier_str oai:200.214.135.189:123456789/7581
network_acronym_str UCB-2
network_name_str Repositório Institucional da UCB
spelling Grattapaglia, DarioSederoff, Ronald2016-10-10T03:51:57Z2016-10-10T03:51:57Z1994GRATTAPAGLIA, Dario; SEDEROFF, Ronald. Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetic, v. 137, n.4, p. 1121-1137,1994.0016-6731http://twingo.ucb.br:8080/jspui/handle/10869/426https://repositorio.ucb.br:9443/jspui/handle/123456789/7581We have used a “two-way pseudo-testcross” mapping strategy in combination with the random amplified polymorhic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many singledose RAPD markers will be heterozygous in one parent, null in theother and therefore segregate 1:l in their F, progeny followinga testcross configuration. Meiosis and gametic segregation iena ch individual can be direcatlnyd efficiently analyzed usingR APD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, 0 = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) ( n = 11 in Eucalyptus). Framework maps ordered with a likelihood support ?1000:1 were assembled covering 95% of the estimated genome size inb oth individuals. Characterizationo f genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage mapfso r any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexuallrye producing living organism. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficieant the intraspecific level and increasingly so with crosseso f genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps ina ny forest species opens the way for a shift fromt he paradigm of a species index map ttoh e heterodox proposaol f constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding.Made available in DSpace on 2016-10-10T03:51:57Z (GMT). No. of bitstreams: 5 Genetic Linkage Maps of Eucalyptus grandis and Eucalyptus urophylla Using.PDF: 6111589 bytes, checksum: 74a1c56016c3c0d227bab24eb5dce175 (MD5) license_url: 52 bytes, checksum: 2f32edb9c19a57e928372a33fd08dba5 (MD5) license_text: 24259 bytes, checksum: f1f24f769b03eb8f9cd3f53c1090841c (MD5) license_rdf: 24658 bytes, checksum: 9d3847733d3c0b59c7c89a1d40d3d240 (MD5) license.txt: 1887 bytes, checksum: 445d1980f282ec865917de35a4c622f6 (MD5) Previous issue date: 1994SimTextoRAPDPseudo-testcrossEucalyptusQTLVegetative propagationGenetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleGeneticsinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UCBinstname:Universidade Católica de Brasília (UCB)instacron:UCBORIGINALGenetic Linkage Maps of Eucalyptus grandis and Eucalyptus urophylla Using.PDFapplication/pdf6111589https://200.214.135.178:9443/jspui/bitstream/123456789/7581/1/Genetic%20Linkage%20Maps%20of%20Eucalyptus%20grandis%20and%20Eucalyptus%20urophylla%20Using.PDF74a1c56016c3c0d227bab24eb5dce175MD51CC-LICENSElicense_urlapplication/octet-stream52https://200.214.135.178:9443/jspui/bitstream/123456789/7581/2/license_url2f32edb9c19a57e928372a33fd08dba5MD52license_textapplication/octet-stream24259https://200.214.135.178:9443/jspui/bitstream/123456789/7581/3/license_textf1f24f769b03eb8f9cd3f53c1090841cMD53license_rdfapplication/octet-stream24658https://200.214.135.178:9443/jspui/bitstream/123456789/7581/4/license_rdf9d3847733d3c0b59c7c89a1d40d3d240MD54LICENSElicense.txttext/plain1887https://200.214.135.178:9443/jspui/bitstream/123456789/7581/5/license.txt445d1980f282ec865917de35a4c622f6MD55TEXTGenetic Linkage Maps of Eucalyptus grandis and Eucalyptus urophylla Using.PDF.txtGenetic Linkage Maps of Eucalyptus grandis and Eucalyptus urophylla Using.PDF.txtExtracted texttext/plain85107https://200.214.135.178:9443/jspui/bitstream/123456789/7581/6/Genetic%20Linkage%20Maps%20of%20Eucalyptus%20grandis%20and%20Eucalyptus%20urophylla%20Using.PDF.txt91b0701d526da600d9f5389ee388a6adMD56123456789/75812017-01-17 15:08:59.773TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkFvIGFzc2luYXIgZSBlbnRyZWdhciBlc3RhIGxpY2Vuw6dhLCBvL2EgU3IuL1NyYS4gKGF1dG9yIG91IGRldGVudG9yCmRvcyBkaXJlaXRvcyBkZSBhdXRvcik6CgphKSBDb25jZWRlIGEgVW5pdmVyc2lkYWRlIENhdMOzbGljYSBkZSBCcmFzw61saWEgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvCiBkZSByZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gZW0gYmFpeG8pLGNvbXVuaWNhciBlL291CiBkaXN0cmlidWlyIG8gZG9jdW1lbnRvIGVudHJlZ3VlIChpbmNsdWluZG8gbyByZXN1bW8vYWJzdHJhY3QpIGVtCiBmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLiAKCmIpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUKIGRldMOpbSBvIGRpcmVpdG8gZGUgY29uY2VkZXJvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gCiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvCiBsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UKIGVudGlkYWRlLiAKCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwogZGlyZWl0b3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIG9idGV2ZSBhdXRvcml6YcOnw6NvIGRvIGRldGVudG9yIGRvcwogZGlyZWl0b3MgZGUgYXV0b3IgcGFyYSBjb25jZWRlciBhIFVuaXZlcnNpZGFkZSBDYXTDs2xpY2EgZGUgQnJhc8OtbGlhCiBvcyBkaXJlaXRvcyByZXF1ZXJpZG9zIHBvciBlc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zCiBkaXJlaXRvcyBzw6NvIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvCiBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLiAKClNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIGJhc2VhZG8gZW0gdHJhYmFsaG8gZmluYW5jaWFkbyBvdSBhcG9pYWRvCiBwb3Igb3V0cmEgaW5zdGl0dWnDp8OjbyBxdWUgbsOjbyBhIFVuaXZlcnNpZGFkZSBDYXTDs2xpY2EgZGUgQnJhc8OtbGlhLAogZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2bwogY29udHJhdG8gb3UgYWNvcmRvLiAKCkEgVW5pdmVyc2lkYWRlIENhdMOzbGljYSBkZSBCcmFzw61saWEgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1CiAodm9zc28pIG5vbWUocykgY29tbyBvKHMpIGF1dG9yKGVzKSBvdSBkZXRlbnRvcihlcylkb3MgZGlyZWl0b3MgZG8KIGRvY3VtZW50byBlbnRyZWd1ZSwgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRhcwogcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbsOnYQoKw4kgbmVjZXNzw6FyaW8gcXVlIGNvbmNvcmRlIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAogYW50ZXMgZG8gc2V1IGRvY3VtZW50byBwb2RlciBhcGFyZWNlciBuYSBSZXBvc2l0w7NyaW8gZGEgVW5pdmVyc2lkYWRlCiBDYXTDs2xpY2EgZGUgQnJhc8OtbGlhLiBQb3IgZmF2b3IsIGxlaWEgYSBsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbwogcHJldGVuZGEgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0gY29udGF0byBwb3IgY29ycmVpbyBlbGV0csO0bmljbwogLSBjZGlAdWNiLmJyIG91IHRlbGVmb25lIC0gKDB4eDYxKSAzMzU2LTkwMjkKRepositório de Publicaçõeshttps://repositorio.ucb.br:9443/jspui/
dc.title.pt_BR.fl_str_mv Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers
title Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers
spellingShingle Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers
Grattapaglia, Dario
RAPD
Pseudo-testcross
Eucalyptus
QTL
Vegetative propagation
title_short Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers
title_full Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers
title_fullStr Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers
title_full_unstemmed Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers
title_sort Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers
author Grattapaglia, Dario
author_facet Grattapaglia, Dario
Sederoff, Ronald
author_role author
author2 Sederoff, Ronald
author2_role author
dc.contributor.author.fl_str_mv Grattapaglia, Dario
Sederoff, Ronald
dc.subject.por.fl_str_mv RAPD
Pseudo-testcross
Eucalyptus
QTL
Vegetative propagation
topic RAPD
Pseudo-testcross
Eucalyptus
QTL
Vegetative propagation
dc.description.abstract.por.fl_txt_mv We have used a “two-way pseudo-testcross” mapping strategy in combination with the random amplified polymorhic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many singledose RAPD markers will be heterozygous in one parent, null in theother and therefore segregate 1:l in their F, progeny followinga testcross configuration. Meiosis and gametic segregation iena ch individual can be direcatlnyd efficiently analyzed usingR APD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, 0 = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) ( n = 11 in Eucalyptus). Framework maps ordered with a likelihood support ?1000:1 were assembled covering 95% of the estimated genome size inb oth individuals. Characterizationo f genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage mapfso r any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexuallrye producing living organism. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficieant the intraspecific level and increasingly so with crosseso f genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps ina ny forest species opens the way for a shift fromt he paradigm of a species index map ttoh e heterodox proposaol f constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding.
dc.description.version.pt_BR.fl_txt_mv Sim
description We have used a “two-way pseudo-testcross” mapping strategy in combination with the random amplified polymorhic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many singledose RAPD markers will be heterozygous in one parent, null in theother and therefore segregate 1:l in their F, progeny followinga testcross configuration. Meiosis and gametic segregation iena ch individual can be direcatlnyd efficiently analyzed usingR APD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, 0 = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) ( n = 11 in Eucalyptus). Framework maps ordered with a likelihood support ?1000:1 were assembled covering 95% of the estimated genome size inb oth individuals. Characterizationo f genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage mapfso r any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexuallrye producing living organism. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficieant the intraspecific level and increasingly so with crosseso f genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps ina ny forest species opens the way for a shift fromt he paradigm of a species index map ttoh e heterodox proposaol f constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding.
publishDate 1994
dc.date.issued.fl_str_mv 1994
dc.date.accessioned.fl_str_mv 2016-10-10T03:51:57Z
dc.date.available.fl_str_mv 2016-10-10T03:51:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
status_str publishedVersion
format article
dc.identifier.citation.fl_str_mv GRATTAPAGLIA, Dario; SEDEROFF, Ronald. Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetic, v. 137, n.4, p. 1121-1137,1994.
dc.identifier.uri.fl_str_mv http://twingo.ucb.br:8080/jspui/handle/10869/426
https://repositorio.ucb.br:9443/jspui/handle/123456789/7581
dc.identifier.issn.none.fl_str_mv 0016-6731
identifier_str_mv GRATTAPAGLIA, Dario; SEDEROFF, Ronald. Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetic, v. 137, n.4, p. 1121-1137,1994.
0016-6731
url http://twingo.ucb.br:8080/jspui/handle/10869/426
https://repositorio.ucb.br:9443/jspui/handle/123456789/7581
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Texto
dc.source.none.fl_str_mv reponame:Repositório Institucional da UCB
instname:Universidade Católica de Brasília (UCB)
instacron:UCB
instname_str Universidade Católica de Brasília (UCB)
instacron_str UCB
institution UCB
reponame_str Repositório Institucional da UCB
collection Repositório Institucional da UCB
bitstream.url.fl_str_mv https://200.214.135.178:9443/jspui/bitstream/123456789/7581/1/Genetic%20Linkage%20Maps%20of%20Eucalyptus%20grandis%20and%20Eucalyptus%20urophylla%20Using.PDF
https://200.214.135.178:9443/jspui/bitstream/123456789/7581/2/license_url
https://200.214.135.178:9443/jspui/bitstream/123456789/7581/3/license_text
https://200.214.135.178:9443/jspui/bitstream/123456789/7581/4/license_rdf
https://200.214.135.178:9443/jspui/bitstream/123456789/7581/5/license.txt
https://200.214.135.178:9443/jspui/bitstream/123456789/7581/6/Genetic%20Linkage%20Maps%20of%20Eucalyptus%20grandis%20and%20Eucalyptus%20urophylla%20Using.PDF.txt
bitstream.checksum.fl_str_mv 74a1c56016c3c0d227bab24eb5dce175
2f32edb9c19a57e928372a33fd08dba5
f1f24f769b03eb8f9cd3f53c1090841c
9d3847733d3c0b59c7c89a1d40d3d240
445d1980f282ec865917de35a4c622f6
91b0701d526da600d9f5389ee388a6ad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1724829829150277632