Modelo h??brido de avalia????o de risco de cr??dito para corpora????es brasileiras com base em algoritmos de aprendizado de m??quina

Detalhes bibliográficos
Autor(a) principal: Greg??rio, Rafael Leite
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UCB
Texto Completo: https://bdtd.ucb.br:8443/jspui/handle/tede/2432
Resumo: The credit risk assessment has a relevant role for financial institutions because it is associated with possible losses and has a large impact on the balance sheets. Although there are several researches on applications of machine learning and finance models, a study is still lacking that integrates available knowledge about credit risk assessment. This paper aims at specifying the machine learning model of the probability of default of publicly traded companies present in the Bovespa Index (corporations) and, based on the estimations of the model, to obtain risk assessment metrics based on risk letters. We converged methodologies verified in the literature and we estimated models that comprise fundamentalist (balance sheet) and governance data, macroeconomic and even variables resulting from the application of the proprietary model of KMV credit risk assessment. We test the XGboost and LinearSVM algorithms, which have very different characteristics among them, but are potentially useful to the problem. Parameter Grids were performed to identify the most representative variables and to specify the best performing model. The model selected was XGboost, and performance was very similar to the results obtained for the North American stock market in analogous research. The estimated credit ratings suggest that they are more sensitive to the economic and financial situation of the companies than that verified by traditional Rating Agencies.
id UCB_9df3c72aeecdb2c22690746989d8ba68
oai_identifier_str oai:bdtd.ucb.br:tede/2432
network_acronym_str UCB
network_name_str Biblioteca Digital de Teses e Dissertações da UCB
spelling Silva Filho, Osvaldo C??ndido dahttp://lattes.cnpq.br/3691103797905606http://lattes.cnpq.br/7136224867022033Greg??rio, Rafael Leite2018-08-08T13:33:24Z2018-07-09GREG??RIO, Rafael Leite. Modelo h??brido de avalia????o de risco de cr??dito para corpora????es brasileiras com base em algoritmos de aprendizado de m??quina. 2018. 70 f. Disserta????o (Programa Stricto Sensu em Economia de Empresas) - Universidade Cat??lica de Bras??lia, Bras??lia, 2018.https://bdtd.ucb.br:8443/jspui/handle/tede/2432The credit risk assessment has a relevant role for financial institutions because it is associated with possible losses and has a large impact on the balance sheets. Although there are several researches on applications of machine learning and finance models, a study is still lacking that integrates available knowledge about credit risk assessment. This paper aims at specifying the machine learning model of the probability of default of publicly traded companies present in the Bovespa Index (corporations) and, based on the estimations of the model, to obtain risk assessment metrics based on risk letters. We converged methodologies verified in the literature and we estimated models that comprise fundamentalist (balance sheet) and governance data, macroeconomic and even variables resulting from the application of the proprietary model of KMV credit risk assessment. We test the XGboost and LinearSVM algorithms, which have very different characteristics among them, but are potentially useful to the problem. Parameter Grids were performed to identify the most representative variables and to specify the best performing model. The model selected was XGboost, and performance was very similar to the results obtained for the North American stock market in analogous research. The estimated credit ratings suggest that they are more sensitive to the economic and financial situation of the companies than that verified by traditional Rating Agencies.A avalia????o do risco de cr??dito tem papel relevante para as institui????es financeiras por estar associada a poss??veis perdas que podem gerar grande impacto nos balan??os. Embora existam v??rias pesquisas sobre aplica????es de modelos de aprendizado de m??quina e finan??as, ainda n??o h?? estudo que integre o conhecimento dispon??vel sobre avalia????o de risco de cr??dito. Este trabalho visa especificar modelo de aprendizado de m??quina da probabilidade de descumprimento de empresas de capital aberto presentes no ??ndice Bovespa (corpora????es) e, fruto das estima????es do modelo, obter m??trica de avalia????o de risco baseada em letras (ratings) de risco. Convergiu-se metodologias verificadas na literatura e estimou-se modelos que compreendem componentes fundamentalistas (de balan??o) e de governan??a corporativa, macroecon??micos e ainda vari??veis produto da aplica????o do modelo propriet??rio de avalia????o de risco de cr??dito KMV. Testou-se os algoritmos XGboost e LinearSVM, os quais possuem caracter??sticas bastante distintas entre si, mas s??o potencialmente ??teis ao problema exposto. Foram realizados Grids de par??metros para identifica????o das vari??veis mais representativas e para a especifica????o do modelo com melhor desempenho. O modelo selecionado foi o XGboost, tendo sido observado desempenho bastante semelhante aos resultados obtidos para o mercado de a????es norte-americano em pesquisa an??loga. Os ratings de cr??dito estimados mostram-se mais sens??veis ?? situa????o econ??mico-financeira das empresas ante o verificado por ag??ncias de rating tradicionais.Submitted by Sara Ribeiro (sara.ribeiro@ucb.br) on 2018-08-08T13:33:03Z No. of bitstreams: 1 RafaelLeiteGregorioDissertacao2018.pdf: 1382550 bytes, checksum: 9c6e4f1d3c561482546aca581262b92b (MD5)Approved for entry into archive by Sara Ribeiro (sara.ribeiro@ucb.br) on 2018-08-08T13:33:24Z (GMT) No. of bitstreams: 1 RafaelLeiteGregorioDissertacao2018.pdf: 1382550 bytes, checksum: 9c6e4f1d3c561482546aca581262b92b (MD5)Made available in DSpace on 2018-08-08T13:33:24Z (GMT). No. of bitstreams: 1 RafaelLeiteGregorioDissertacao2018.pdf: 1382550 bytes, checksum: 9c6e4f1d3c561482546aca581262b92b (MD5) Previous issue date: 2018-07-09application/pdfhttps://bdtd.ucb.br:8443/jspui/retrieve/5831/RafaelLeiteGregorioDissertacao2018.pdf.jpgporUniversidade Cat??lica de Bras??liaPrograma Stricto Sensu em Economia de EmpresasUCBBrasilEscola de Gest??o e Neg??ciosSVMXGboostRisco de cr??ditoRatings de cr??ditoDefault probabilityCredit riskCNPQ::CIENCIAS SOCIAIS APLICADAS::ECONOMIAModelo h??brido de avalia????o de risco de cr??dito para corpora????es brasileiras com base em algoritmos de aprendizado de m??quinainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UCBinstname:Universidade Católica de Brasília (UCB)instacron:UCBLICENSElicense.txtlicense.txttext/plain; charset=utf-81905https://200.214.135.178:8443/jspui/bitstream/tede/2432/1/license.txt75558dcf859532757239878b42f1c2c7MD51ORIGINALRafaelLeiteGregorioDissertacao2018.pdfRafaelLeiteGregorioDissertacao2018.pdfapplication/pdf1382550https://200.214.135.178:8443/jspui/bitstream/tede/2432/2/RafaelLeiteGregorioDissertacao2018.pdf9c6e4f1d3c561482546aca581262b92bMD52TEXTRafaelLeiteGregorioDissertacao2018.pdf.txtRafaelLeiteGregorioDissertacao2018.pdf.txttext/plain123884https://200.214.135.178:8443/jspui/bitstream/tede/2432/3/RafaelLeiteGregorioDissertacao2018.pdf.txt1674e5e51fc22a5d533014aec794f12eMD53THUMBNAILRafaelLeiteGregorioDissertacao2018.pdf.jpgRafaelLeiteGregorioDissertacao2018.pdf.jpgimage/jpeg4767https://200.214.135.178:8443/jspui/bitstream/tede/2432/4/RafaelLeiteGregorioDissertacao2018.pdf.jpgc23cb3d79526b17d57c0be2f224f9dceMD54tede/24322018-08-09 01:10:38.819TElDRU4/P0EgREUgRElTVFJJQlVJPz8/P08gTj8/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/Pz9vIGRlc3RhIGxpY2VuPz9hLCB2b2M/PyAoYXV0b3Igb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/PyBVbml2ZXJzaWRhZGUgQ2F0Pz9saWNhIGRlIEJyYXM/P2xpYSAoVUNCKSBvIGRpcmVpdG8gbj8/by1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz8/P28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHI/P25pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3MgPz91ZGlvIG91IHY/P2Rlby4KClZvYz8/IGNvbmNvcmRhIHF1ZSBhIFVDQiBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlPz9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/Pz9vIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YT8/Pz9vLgoKVm9jPz8gdGFtYj8/bSBjb25jb3JkYSBxdWUgYSBVQ0IgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgYz8/cGlhIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/Pz8/byBwYXJhIGZpbnMgZGUgc2VndXJhbj8/YSwgYmFjay11cCBlIHByZXNlcnZhPz8/P28uCgpWb2M/PyBkZWNsYXJhIHF1ZSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz8/P28gPz8gb3JpZ2luYWwgZSBxdWUgdm9jPz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW4/P2EuIFZvYz8/IHRhbWI/P20gZGVjbGFyYSBxdWUgbyBkZXA/P3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/Pz8/byBuPz9vIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1Pz9tLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz8/P28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvYz8/IG4/P28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPz8gZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz8/byBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyID8/IFVDQiBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW4/P2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdD8/IGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGU/P2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/Pz8/byBvcmEgZGVwb3NpdGFkYS4KCkNhc28gYSB0ZXNlIG91IGRpc3NlcnRhPz8/P28gZGVwb3NpdGFkYSB0ZW5oYSBzaWRvIHJlc3VsdGFkbyBkZSB1bSBwYXRyb2M/P25pbyBvdSBhcG9pbyBkZSB1bWEgYWc/P25jaWEgZGUgZm9tZW50byBvdSBvdXRybyBvcmdhbmlzbW8gcXVlIG4/P28gc2VqYSBhIFVDQiwgdm9jPz8gZGVjbGFyYSBxdWUgcmVzcGVpdG91IHRvZG9zIGUgcXVhaXNxdWVyIGRpcmVpdG9zIGRlIHJldmlzPz9vIGNvbW8gdGFtYj8/bSBhcyBkZW1haXMgb2JyaWdhPz8/P2VzIGV4aWdpZGFzIHBvciBjb250cmF0byBvdSBhY29yZG8uCgpBIFVDQiBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhPz8/P28sIGUgbj8/byBmYXI/PyBxdWFscXVlciBhbHRlcmE/Pz8/bywgYWw/P20gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbj8/YS4KBiblioteca Digital de Teses e Dissertaçõeshttps://bdtd.ucb.br:8443/jspui/
dc.title.por.fl_str_mv Modelo h??brido de avalia????o de risco de cr??dito para corpora????es brasileiras com base em algoritmos de aprendizado de m??quina
title Modelo h??brido de avalia????o de risco de cr??dito para corpora????es brasileiras com base em algoritmos de aprendizado de m??quina
spellingShingle Modelo h??brido de avalia????o de risco de cr??dito para corpora????es brasileiras com base em algoritmos de aprendizado de m??quina
Greg??rio, Rafael Leite
SVM
XGboost
Risco de cr??dito
Ratings de cr??dito
Default probability
Credit risk
CNPQ::CIENCIAS SOCIAIS APLICADAS::ECONOMIA
title_short Modelo h??brido de avalia????o de risco de cr??dito para corpora????es brasileiras com base em algoritmos de aprendizado de m??quina
title_full Modelo h??brido de avalia????o de risco de cr??dito para corpora????es brasileiras com base em algoritmos de aprendizado de m??quina
title_fullStr Modelo h??brido de avalia????o de risco de cr??dito para corpora????es brasileiras com base em algoritmos de aprendizado de m??quina
title_full_unstemmed Modelo h??brido de avalia????o de risco de cr??dito para corpora????es brasileiras com base em algoritmos de aprendizado de m??quina
title_sort Modelo h??brido de avalia????o de risco de cr??dito para corpora????es brasileiras com base em algoritmos de aprendizado de m??quina
author Greg??rio, Rafael Leite
author_facet Greg??rio, Rafael Leite
author_role author
dc.contributor.advisor1.fl_str_mv Silva Filho, Osvaldo C??ndido da
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3691103797905606
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7136224867022033
dc.contributor.author.fl_str_mv Greg??rio, Rafael Leite
contributor_str_mv Silva Filho, Osvaldo C??ndido da
dc.subject.por.fl_str_mv SVM
XGboost
Risco de cr??dito
Ratings de cr??dito
Default probability
Credit risk
topic SVM
XGboost
Risco de cr??dito
Ratings de cr??dito
Default probability
Credit risk
CNPQ::CIENCIAS SOCIAIS APLICADAS::ECONOMIA
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS SOCIAIS APLICADAS::ECONOMIA
dc.description.abstract.eng.fl_txt_mv The credit risk assessment has a relevant role for financial institutions because it is associated with possible losses and has a large impact on the balance sheets. Although there are several researches on applications of machine learning and finance models, a study is still lacking that integrates available knowledge about credit risk assessment. This paper aims at specifying the machine learning model of the probability of default of publicly traded companies present in the Bovespa Index (corporations) and, based on the estimations of the model, to obtain risk assessment metrics based on risk letters. We converged methodologies verified in the literature and we estimated models that comprise fundamentalist (balance sheet) and governance data, macroeconomic and even variables resulting from the application of the proprietary model of KMV credit risk assessment. We test the XGboost and LinearSVM algorithms, which have very different characteristics among them, but are potentially useful to the problem. Parameter Grids were performed to identify the most representative variables and to specify the best performing model. The model selected was XGboost, and performance was very similar to the results obtained for the North American stock market in analogous research. The estimated credit ratings suggest that they are more sensitive to the economic and financial situation of the companies than that verified by traditional Rating Agencies.
dc.description.abstract.por.fl_txt_mv A avalia????o do risco de cr??dito tem papel relevante para as institui????es financeiras por estar associada a poss??veis perdas que podem gerar grande impacto nos balan??os. Embora existam v??rias pesquisas sobre aplica????es de modelos de aprendizado de m??quina e finan??as, ainda n??o h?? estudo que integre o conhecimento dispon??vel sobre avalia????o de risco de cr??dito. Este trabalho visa especificar modelo de aprendizado de m??quina da probabilidade de descumprimento de empresas de capital aberto presentes no ??ndice Bovespa (corpora????es) e, fruto das estima????es do modelo, obter m??trica de avalia????o de risco baseada em letras (ratings) de risco. Convergiu-se metodologias verificadas na literatura e estimou-se modelos que compreendem componentes fundamentalistas (de balan??o) e de governan??a corporativa, macroecon??micos e ainda vari??veis produto da aplica????o do modelo propriet??rio de avalia????o de risco de cr??dito KMV. Testou-se os algoritmos XGboost e LinearSVM, os quais possuem caracter??sticas bastante distintas entre si, mas s??o potencialmente ??teis ao problema exposto. Foram realizados Grids de par??metros para identifica????o das vari??veis mais representativas e para a especifica????o do modelo com melhor desempenho. O modelo selecionado foi o XGboost, tendo sido observado desempenho bastante semelhante aos resultados obtidos para o mercado de a????es norte-americano em pesquisa an??loga. Os ratings de cr??dito estimados mostram-se mais sens??veis ?? situa????o econ??mico-financeira das empresas ante o verificado por ag??ncias de rating tradicionais.
description The credit risk assessment has a relevant role for financial institutions because it is associated with possible losses and has a large impact on the balance sheets. Although there are several researches on applications of machine learning and finance models, a study is still lacking that integrates available knowledge about credit risk assessment. This paper aims at specifying the machine learning model of the probability of default of publicly traded companies present in the Bovespa Index (corporations) and, based on the estimations of the model, to obtain risk assessment metrics based on risk letters. We converged methodologies verified in the literature and we estimated models that comprise fundamentalist (balance sheet) and governance data, macroeconomic and even variables resulting from the application of the proprietary model of KMV credit risk assessment. We test the XGboost and LinearSVM algorithms, which have very different characteristics among them, but are potentially useful to the problem. Parameter Grids were performed to identify the most representative variables and to specify the best performing model. The model selected was XGboost, and performance was very similar to the results obtained for the North American stock market in analogous research. The estimated credit ratings suggest that they are more sensitive to the economic and financial situation of the companies than that verified by traditional Rating Agencies.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-08-08T13:33:24Z
dc.date.issued.fl_str_mv 2018-07-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.citation.fl_str_mv GREG??RIO, Rafael Leite. Modelo h??brido de avalia????o de risco de cr??dito para corpora????es brasileiras com base em algoritmos de aprendizado de m??quina. 2018. 70 f. Disserta????o (Programa Stricto Sensu em Economia de Empresas) - Universidade Cat??lica de Bras??lia, Bras??lia, 2018.
dc.identifier.uri.fl_str_mv https://bdtd.ucb.br:8443/jspui/handle/tede/2432
identifier_str_mv GREG??RIO, Rafael Leite. Modelo h??brido de avalia????o de risco de cr??dito para corpora????es brasileiras com base em algoritmos de aprendizado de m??quina. 2018. 70 f. Disserta????o (Programa Stricto Sensu em Economia de Empresas) - Universidade Cat??lica de Bras??lia, Bras??lia, 2018.
url https://bdtd.ucb.br:8443/jspui/handle/tede/2432
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Cat??lica de Bras??lia
dc.publisher.program.fl_str_mv Programa Stricto Sensu em Economia de Empresas
dc.publisher.initials.fl_str_mv UCB
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola de Gest??o e Neg??cios
publisher.none.fl_str_mv Universidade Cat??lica de Bras??lia
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UCB
instname:Universidade Católica de Brasília (UCB)
instacron:UCB
instname_str Universidade Católica de Brasília (UCB)
instacron_str UCB
institution UCB
reponame_str Biblioteca Digital de Teses e Dissertações da UCB
collection Biblioteca Digital de Teses e Dissertações da UCB
bitstream.url.fl_str_mv https://200.214.135.178:8443/jspui/bitstream/tede/2432/1/license.txt
https://200.214.135.178:8443/jspui/bitstream/tede/2432/2/RafaelLeiteGregorioDissertacao2018.pdf
https://200.214.135.178:8443/jspui/bitstream/tede/2432/3/RafaelLeiteGregorioDissertacao2018.pdf.txt
https://200.214.135.178:8443/jspui/bitstream/tede/2432/4/RafaelLeiteGregorioDissertacao2018.pdf.jpg
bitstream.checksum.fl_str_mv 75558dcf859532757239878b42f1c2c7
9c6e4f1d3c561482546aca581262b92b
1674e5e51fc22a5d533014aec794f12e
c23cb3d79526b17d57c0be2f224f9dce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1724829778001788928