Estudo comparativo de algoritmos de agrupamento para mineração de dados educacionais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UCS |
Texto Completo: | https://repositorio.ucs.br/handle/11338/1256 |
Resumo: | A mineração de dados educacionais é um campo de pesquisa que vem adquirindo destaque dentro da área de mineração de dados. Ela é uma disciplina que busca obter novas informações através de dados educacionais com o intuito de desenvolver e fortalecer as teorias cognitivas de ensino-aprendizagem. O grande volume dos dados educacionais disponíveis dificulta a análise manual dos mesmos, por isso são necessárias técnicas automáticas para fazer essa análise. Dentre estas técnicas destaca-se: a predição, o agrupamento, a mineração relacional, a descoberta com modelos e a destilação de dados para o julgamento humano. Sendo uma das mais importantes, a técnica de agrupamento consiste em formar grupos de dados com grande similaridade entre si e uma grande dissimilaridade entre elementos de grupos diferentes. Este trabalho apresenta uma revisão bibliográfica sobre mineração de dados educacionais e o uso de técnicas de agrupamento de dados, apresentando um estudo comparativo dos algoritmos de agrupamento, tais como: k-média, maximização da expectativa, modelo imunológico e métodos hierárquicos. O algoritmo k-média é o mais conhecido dentre os algoritmos de agrupamento. Ele forma os grupos visando minimizar a distância entre os elementos do grupo em relação ao centro. A maximização da expectativa é um algoritmo de estimativa e possui o objetivo de encontrar o melhor ajuste de um modelo para um conjunto de dados através da estimativa da máxima verossimilhança. O modelo imunológico procura formar grupos, levando em consideração uma maior homogeneidade entre os elementos do mesmo grupo e uma maior heterogeneidade entre os elementos de grupos diferentes, utilizando dois conceitos da área de Sistemas Imunológicos Artificiais. Os algoritmos hierárquicos agrupam os elementos em uma estrutura de árvore, organizando os grupos em formato hierárquico, resultando assim uma sequência aninhada de partições. Neste estudo, foram utilizadas as ferramentas WEKA (Mark et al., 2009) e R (Chambers, 2008). Além disso, três conjuntos de dados públicos: Geometry, Chinese Tone Study e Álgebra I 2006 foram analisados. Os resultados da execução dos algoritmos foram tabulados e analisados através dos critérios de homogeneidade e separação. A análise dos critérios identificou que os algoritmos não estão suficientemente preparados para trabalhar com os dados educacionais. Dentre todos os testes o algoritmo imunológico foi o que apresentou melhores resultados em relação aos critérios de homogeneidade e separação (sic). |
id |
UCS_35771b021a91f16c68c128ba85732050 |
---|---|
oai_identifier_str |
oai:repositorio.ucs.br:11338/1256 |
network_acronym_str |
UCS |
network_name_str |
Repositório Institucional da UCS |
repository_id_str |
|
spelling |
Zat, DalineLima, Maria de Fátima Webber do PradoBoff, ElisaWebber, Carine Geltrudes2016-08-09T12:32:30Z2016-08-09T12:32:30Z2012https://repositorio.ucs.br/handle/11338/1256A mineração de dados educacionais é um campo de pesquisa que vem adquirindo destaque dentro da área de mineração de dados. Ela é uma disciplina que busca obter novas informações através de dados educacionais com o intuito de desenvolver e fortalecer as teorias cognitivas de ensino-aprendizagem. O grande volume dos dados educacionais disponíveis dificulta a análise manual dos mesmos, por isso são necessárias técnicas automáticas para fazer essa análise. Dentre estas técnicas destaca-se: a predição, o agrupamento, a mineração relacional, a descoberta com modelos e a destilação de dados para o julgamento humano. Sendo uma das mais importantes, a técnica de agrupamento consiste em formar grupos de dados com grande similaridade entre si e uma grande dissimilaridade entre elementos de grupos diferentes. Este trabalho apresenta uma revisão bibliográfica sobre mineração de dados educacionais e o uso de técnicas de agrupamento de dados, apresentando um estudo comparativo dos algoritmos de agrupamento, tais como: k-média, maximização da expectativa, modelo imunológico e métodos hierárquicos. O algoritmo k-média é o mais conhecido dentre os algoritmos de agrupamento. Ele forma os grupos visando minimizar a distância entre os elementos do grupo em relação ao centro. A maximização da expectativa é um algoritmo de estimativa e possui o objetivo de encontrar o melhor ajuste de um modelo para um conjunto de dados através da estimativa da máxima verossimilhança. O modelo imunológico procura formar grupos, levando em consideração uma maior homogeneidade entre os elementos do mesmo grupo e uma maior heterogeneidade entre os elementos de grupos diferentes, utilizando dois conceitos da área de Sistemas Imunológicos Artificiais. Os algoritmos hierárquicos agrupam os elementos em uma estrutura de árvore, organizando os grupos em formato hierárquico, resultando assim uma sequência aninhada de partições. Neste estudo, foram utilizadas as ferramentas WEKA (Mark et al., 2009) e R (Chambers, 2008). Além disso, três conjuntos de dados públicos: Geometry, Chinese Tone Study e Álgebra I 2006 foram analisados. Os resultados da execução dos algoritmos foram tabulados e analisados através dos critérios de homogeneidade e separação. A análise dos critérios identificou que os algoritmos não estão suficientemente preparados para trabalhar com os dados educacionais. Dentre todos os testes o algoritmo imunológico foi o que apresentou melhores resultados em relação aos critérios de homogeneidade e separação (sic).Mineração de dados (Computação)Educação - Processamento de dadosAlgorítmos computacionaisEstudo comparativo de algoritmos de agrupamento para mineração de dados educacionaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisporreponame:Repositório Institucional da UCSinstname:Universidade de Caxias do Sul (UCS)instacron:UCSinfo:eu-repo/semantics/openAccessUniversidade de Caxias do SulBacharelado em Ciência da ComputaçãoTEXTTCC Daline Zat.pdf.txtTCC Daline Zat.pdf.txtExtracted texttext/plain294200https://repositorio.ucs.br/xmlui/bitstream/11338/1256/3/TCC%20Daline%20Zat.pdf.txteae048090fa557e6b0f9f03ea3064483MD53THUMBNAILTCC Daline Zat.pdf.jpgTCC Daline Zat.pdf.jpgGenerated Thumbnailimage/jpeg1156https://repositorio.ucs.br/xmlui/bitstream/11338/1256/4/TCC%20Daline%20Zat.pdf.jpg271a7884628a4dfd78fb1dc6cf2176e1MD54ORIGINALTCC Daline Zat.pdfTCC Daline Zat.pdfapplication/pdf3238109https://repositorio.ucs.br/xmlui/bitstream/11338/1256/1/TCC%20Daline%20Zat.pdf843915489acdc3aa293a1a07559c4263MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucs.br/xmlui/bitstream/11338/1256/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5211338/12562018-08-17 06:26:59.783oai:repositorio.ucs.br:11338/1256Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de Publicaçõeshttp://repositorio.ucs.br/oai/requestopendoar:2024-05-06T10:05:00.757962Repositório Institucional da UCS - Universidade de Caxias do Sul (UCS)false |
dc.title.pt_BR.fl_str_mv |
Estudo comparativo de algoritmos de agrupamento para mineração de dados educacionais |
title |
Estudo comparativo de algoritmos de agrupamento para mineração de dados educacionais |
spellingShingle |
Estudo comparativo de algoritmos de agrupamento para mineração de dados educacionais Zat, Daline Mineração de dados (Computação) Educação - Processamento de dados Algorítmos computacionais |
title_short |
Estudo comparativo de algoritmos de agrupamento para mineração de dados educacionais |
title_full |
Estudo comparativo de algoritmos de agrupamento para mineração de dados educacionais |
title_fullStr |
Estudo comparativo de algoritmos de agrupamento para mineração de dados educacionais |
title_full_unstemmed |
Estudo comparativo de algoritmos de agrupamento para mineração de dados educacionais |
title_sort |
Estudo comparativo de algoritmos de agrupamento para mineração de dados educacionais |
author |
Zat, Daline |
author_facet |
Zat, Daline |
author_role |
author |
dc.contributor.other.none.fl_str_mv |
Lima, Maria de Fátima Webber do Prado Boff, Elisa |
dc.contributor.author.fl_str_mv |
Zat, Daline |
dc.contributor.advisor1.fl_str_mv |
Webber, Carine Geltrudes |
contributor_str_mv |
Webber, Carine Geltrudes |
dc.subject.por.fl_str_mv |
Mineração de dados (Computação) Educação - Processamento de dados Algorítmos computacionais |
topic |
Mineração de dados (Computação) Educação - Processamento de dados Algorítmos computacionais |
description |
A mineração de dados educacionais é um campo de pesquisa que vem adquirindo destaque dentro da área de mineração de dados. Ela é uma disciplina que busca obter novas informações através de dados educacionais com o intuito de desenvolver e fortalecer as teorias cognitivas de ensino-aprendizagem. O grande volume dos dados educacionais disponíveis dificulta a análise manual dos mesmos, por isso são necessárias técnicas automáticas para fazer essa análise. Dentre estas técnicas destaca-se: a predição, o agrupamento, a mineração relacional, a descoberta com modelos e a destilação de dados para o julgamento humano. Sendo uma das mais importantes, a técnica de agrupamento consiste em formar grupos de dados com grande similaridade entre si e uma grande dissimilaridade entre elementos de grupos diferentes. Este trabalho apresenta uma revisão bibliográfica sobre mineração de dados educacionais e o uso de técnicas de agrupamento de dados, apresentando um estudo comparativo dos algoritmos de agrupamento, tais como: k-média, maximização da expectativa, modelo imunológico e métodos hierárquicos. O algoritmo k-média é o mais conhecido dentre os algoritmos de agrupamento. Ele forma os grupos visando minimizar a distância entre os elementos do grupo em relação ao centro. A maximização da expectativa é um algoritmo de estimativa e possui o objetivo de encontrar o melhor ajuste de um modelo para um conjunto de dados através da estimativa da máxima verossimilhança. O modelo imunológico procura formar grupos, levando em consideração uma maior homogeneidade entre os elementos do mesmo grupo e uma maior heterogeneidade entre os elementos de grupos diferentes, utilizando dois conceitos da área de Sistemas Imunológicos Artificiais. Os algoritmos hierárquicos agrupam os elementos em uma estrutura de árvore, organizando os grupos em formato hierárquico, resultando assim uma sequência aninhada de partições. Neste estudo, foram utilizadas as ferramentas WEKA (Mark et al., 2009) e R (Chambers, 2008). Além disso, três conjuntos de dados públicos: Geometry, Chinese Tone Study e Álgebra I 2006 foram analisados. Os resultados da execução dos algoritmos foram tabulados e analisados através dos critérios de homogeneidade e separação. A análise dos critérios identificou que os algoritmos não estão suficientemente preparados para trabalhar com os dados educacionais. Dentre todos os testes o algoritmo imunológico foi o que apresentou melhores resultados em relação aos critérios de homogeneidade e separação (sic). |
publishDate |
2012 |
dc.date.submitted.none.fl_str_mv |
2012 |
dc.date.accessioned.fl_str_mv |
2016-08-09T12:32:30Z |
dc.date.available.fl_str_mv |
2016-08-09T12:32:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ucs.br/handle/11338/1256 |
url |
https://repositorio.ucs.br/handle/11338/1256 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UCS instname:Universidade de Caxias do Sul (UCS) instacron:UCS |
instname_str |
Universidade de Caxias do Sul (UCS) |
instacron_str |
UCS |
institution |
UCS |
reponame_str |
Repositório Institucional da UCS |
collection |
Repositório Institucional da UCS |
bitstream.url.fl_str_mv |
https://repositorio.ucs.br/xmlui/bitstream/11338/1256/3/TCC%20Daline%20Zat.pdf.txt https://repositorio.ucs.br/xmlui/bitstream/11338/1256/4/TCC%20Daline%20Zat.pdf.jpg https://repositorio.ucs.br/xmlui/bitstream/11338/1256/1/TCC%20Daline%20Zat.pdf https://repositorio.ucs.br/xmlui/bitstream/11338/1256/2/license.txt |
bitstream.checksum.fl_str_mv |
eae048090fa557e6b0f9f03ea3064483 271a7884628a4dfd78fb1dc6cf2176e1 843915489acdc3aa293a1a07559c4263 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UCS - Universidade de Caxias do Sul (UCS) |
repository.mail.fl_str_mv |
|
_version_ |
1813258452332445696 |