Caracterização molecular de genes de resistência às βlactamases em isolados de chryseobacterium indologenes

Detalhes bibliográficos
Autor(a) principal: Freitas, Ellen Albuquerque de
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade do Estado do Amazonas (UEA)
Texto Completo: http://repositorioinstitucional.uea.edu.br//handle/riuea/2242
Resumo: Chryseobacterium indologenes is a ubiquitous bacterium related to several types of infections, presenting a multiresistant profile, independent of the isolate clinical sample, reducing the therapeutic options. The aim of this study was to characterize molecularly the resistance genes of β-lactamases in isolates of Chryseobacterium indologenes. This was a descriptive study, in which two multiresistant species of Chryseobacterium indologenes were studied, from the blood culture of two female hospitalized patients, aged over 60 years. Chromosomal and plasmid DNA were extracted and polymerase chain reactions (PCR) were performed to detect ESBL resistance genes (blaTEM, blaSHV, blaAmpC, blaCTX-M groups 1, 2, 8 and 9), carbapenemases (blaGES, blaKPC, blaIMI, blaOXA and blaOXA-48 like) and metallo-β-lactamases, (blaNDM, blaVIM, blaIMP, blaIND-like and blaIND-2). The PCR products were sequenced and later analyzed in the Geneious software program. The blaIND-like gene was detected with similarity to the IND-3 and 8 alleles. In relation to the IND-3 allele, it had a mutation at position 119 (ALA → SER). The phylogenetic tree showed that the BGN 23 isolate presented 100% similarity in relation to the common ancestor and 12% similarity difference in relation to the nearest descendant group, whereas the isolate P133 presented only a 9% difference in relation to its group. As for the common ancestor, the isolate P133 is quite distant, possibly indicating that it has more genetic differences in relation to it. This study detected a mutation at position 119 of the IND-3 allele, not yet described in the literature, which may mean possible changes in the susceptibility profile of the bacterium. The IND-8 allele showed 100% similarity to those already described and inserted in the public Genbank database. In relation to phylogeny, it can be observed that C. indologenes presents as a new lineage inserted along the lineage with Asian and European profile, presenting genetic characteristics in relation to its common ancestor. Molecular studies on bacterial resistance mechanisms of multiresistant species should be continued, as they will aid in future research for the discovery of new drugs, new genetic and/or intrinsic resistance mechanisms, or even the identification of new bacterial molecular targets, in order that the usefulness of the antibiotic therapy can be restored or the introduction of a new antibiotic therapy necessary to treat the infectious diseases caused by them and to avoid the spread of pathogenic clones.
id UEA_64f61cda06515b938a16d97326b911a4
oai_identifier_str oai:repositorioinstitucional:riuea/2242
network_acronym_str UEA
network_name_str Repositório Institucional da Universidade do Estado do Amazonas (UEA)
repository_id_str
spelling Caracterização molecular de genes de resistência às βlactamases em isolados de chryseobacterium indologenesMolecular characterization of βlactamases resistance genes in chryseobacterium indologenes isolatesMutaçãoESBLCarbapenemasesChryseobacterium indologenesMultirresistênciaHematologiaChryseobacterium indologenes is a ubiquitous bacterium related to several types of infections, presenting a multiresistant profile, independent of the isolate clinical sample, reducing the therapeutic options. The aim of this study was to characterize molecularly the resistance genes of β-lactamases in isolates of Chryseobacterium indologenes. This was a descriptive study, in which two multiresistant species of Chryseobacterium indologenes were studied, from the blood culture of two female hospitalized patients, aged over 60 years. Chromosomal and plasmid DNA were extracted and polymerase chain reactions (PCR) were performed to detect ESBL resistance genes (blaTEM, blaSHV, blaAmpC, blaCTX-M groups 1, 2, 8 and 9), carbapenemases (blaGES, blaKPC, blaIMI, blaOXA and blaOXA-48 like) and metallo-β-lactamases, (blaNDM, blaVIM, blaIMP, blaIND-like and blaIND-2). The PCR products were sequenced and later analyzed in the Geneious software program. The blaIND-like gene was detected with similarity to the IND-3 and 8 alleles. In relation to the IND-3 allele, it had a mutation at position 119 (ALA → SER). The phylogenetic tree showed that the BGN 23 isolate presented 100% similarity in relation to the common ancestor and 12% similarity difference in relation to the nearest descendant group, whereas the isolate P133 presented only a 9% difference in relation to its group. As for the common ancestor, the isolate P133 is quite distant, possibly indicating that it has more genetic differences in relation to it. This study detected a mutation at position 119 of the IND-3 allele, not yet described in the literature, which may mean possible changes in the susceptibility profile of the bacterium. The IND-8 allele showed 100% similarity to those already described and inserted in the public Genbank database. In relation to phylogeny, it can be observed that C. indologenes presents as a new lineage inserted along the lineage with Asian and European profile, presenting genetic characteristics in relation to its common ancestor. Molecular studies on bacterial resistance mechanisms of multiresistant species should be continued, as they will aid in future research for the discovery of new drugs, new genetic and/or intrinsic resistance mechanisms, or even the identification of new bacterial molecular targets, in order that the usefulness of the antibiotic therapy can be restored or the introduction of a new antibiotic therapy necessary to treat the infectious diseases caused by them and to avoid the spread of pathogenic clones.Chryseobacterium indologenes é uma bactéria ubíqua que tem sido frequentemente relacionada a vários tipos de infecções, apresentando perfil multirresistente, independente da amostra clínica da qual é isolada, diminuindo as opções terapêuticas. Este estudo teve por objetivo caracterizar molecularmente os genes de resistência das β-lactamases em isolados de Chryseobacterium indologenes. Tratou-se de um estudo descritivo, no qual foram estudadas duas espécies multirresistentes de Chryseobacterium indologenes, provenientes da hemocultura de duas pacientes internadas, do sexo feminino, com idade superior a 60 anos. Foram extraídos o DNA cromossomal e plasmidial e realizadas reações da polimerase em cadeia (PCR) para detecção dos genes de resistência das ESBLs (blaTEM, blaSHV, blaAmpC, blaCTX-M grupos 1, 2, 8 e 9), carbapenemases (blaGES, blaKPC, blaIMI, blaOXA e blaOXA-48 like) e metalo-β-lactamases, (blaNDM, blaVIM, blaIMP, blaIND-like e blaIND-2). Os produtos da PCR foram sequenciados e posteriormente analisados no programa de software Geneious. Foi detectado o gene blaIND-like, com similaridade aos alelos IND-3 e 8. Em relação ao alelo IND-3, o mesmo apresentou mutação na posição 119 (ALA→SER). A árvore filogenética evidenciou que o isolado BGN 23 apresentou 100% de similaridade em relação ao ancestral comum e 12% de diferença de similaridade em relação ao grupo descendente mais próximo, enquanto que o isolado P 133 apresentou apenas 9% de diferença em relação ao seu grupo descendente mais próximo. Já em relação ao ancestral comum, o isolado P 133 encontra-se bastante distante, indicando possivelmente que o mesmo apresenta mais diferenças genéticas em relação ao mesmo. Este estudo detectou uma mutação, na posição 119, do alelo IND-3, ainda não descrita na literatura, o que pode significar possíveis mudanças no perfil de suscetibilidade da bactéria. O alelo IND-8 apresentou 100% de similaridade com os já descritos e inseridos no banco de dados público Genbank. Em relação a filogenia, pode-se observar que o C. indologenes apresenta-se como uma nova linhagem inserida junto a linhagem com perfil asiático e europeu, apresentando características genéticas em relação a seu ancestral comum. Estudos moleculares sobre mecanismos de resistência bacterianos de espécies multirresistentes devem ser continuados, pois auxiliarão em pesquisas futuras para o descobrimento de novas drogas, novos mecanismos de resistência genéticos e/ou intrínsecos, ou até mesmo a identificação de novos alvos moleculares bacterianos, a fim de que se possa restaurar a utilidade da antibioticoterapia ou introduzir uma nova antibioticoterapia necessária para tratar as doenças infecciosas ocasionadas pelos mesmos e evitar a disseminação de clones patogênicosUniversidade do Estado do AmazonasBrasilPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS Á HEMATOLOGIAUEAFerreira, William Antuneshttp://lattes.cnpq.br/9487847737983248Ferreira, Cristina Mottahttp://lattes.cnpq.br/7283507436511006Ferreira, Cristina Mottahttp://lattes.cnpq.br/7283507436511006Pontes, Gemilson Soareshttp://lattes.cnpq.br/9081671233815990Moura Neto, José Pereira dehttp://lattes.cnpq.br/6749773067557179Freitas, Ellen Albuquerque de2020-03-122020-03-12T14:18:21Z2017-11-262020-03-12T14:18:21Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorioinstitucional.uea.edu.br//handle/riuea/2242porABREU, A. G. et al. Extended-spectrum β-lactamase-producing Enterobacteriaceae in community-acquired urinary tract infections in São Luís, Brazil. Brazilian Journal of Microbiology, n. 44, v. 2, p. 469-471, 2013. AFSHAR, M.; NOBAKHT, E.; LEW, S. Q. Chryseobacterium indologenes peritonitis in peritoneal dialysis. BMJ Case Reports, 2013. AFZALI, H. et al. Characterization of CTX-M-Type Extend-Spectrum β-Lactamase Producing Klebsiella spp. in Kashan, Iran. Jundishapur J Microbiol, v. 8, n. 10, out 2015. AHMED, S. H. et al. Nosocomial blood stream infection in intensive care units at Assiut University Hospitals (Upper Egypt) with special reference to extended spectrum b-lactamase producing organisms. BMC Research Notes, v. 2, n. 76, mai 2009. AKAY, M.; GUNDUZ, E.; GULBAS, Z. Catheter-related bacteremia due to Chryseobacterium indologenes in a bone marrow transplant recipient. Bone Marrow Transplantation, v. 37, p. 435-436, 2006. ALYAMANI, E. J. et al. The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia. Ann Clin Microbiol Antimicrob, v. 16, n.1, 2017 AL-ZAROUNI, M. et al. Prevalence and Antimicrobial Susceptibility Pattern of Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in the United Arab Emirates. Med Princ Pract, n. 17, p. 32–36, 2008. ANES, J. et al. The ins and outs of RND efflux pumps in Escherichia coli. Frontiers in Microbiology, v. 6, 2015. ARIZA, A. et al. Hypersensitivity Reactions to ß-Lactams: Relevance of Hapten-Protein Conjugates. J Investig Allergol Clin Immunol, v. 25, n. 1, p. 12-25, 2015. ATICI, S. et al. Ventilator-associated pneumonia caused by Chryseobacterium indologenes: a rare infant case and review of the literature. SpringerPlus, v. 5, out 2016. AZEVEDO, S. M. M. Farmacologia dos antibióticos beta-lactâmicos. 2014. 70 p. Dissertação (Mestrado Integrado em Ciências Farmacêuticas). Faculdade de Ciências da Saúde. Universidade Fernando Pessoa, Porto, 2014. BAKTHAVATCHALAM, Y. D.; ANANDAN, S.; VEERARAGHAVAN, D. Laboratory Detection and Clinical Implication of Oxacillinase-48 like Carbapenemase: The Hidden Threat. J Glob Infect Dis. V. 8, n.1, p. 41-50, jan-mar 2016. BALJIN, B. et al. Faecal Carriage of Gram-Negative MultidrugResistant Bacteria among Patients Hospitalized in Two Centres in Ulaanbaatar, Mongolia. Plos One, dez 2016. BANERJEE, T. et al. Long-term outbreak of Klebsiella pneumoniae e third generation 62 cephalosporin use in a neonatal intensive care unit in north India. Indian J Med Res, v. 144, n. 4, p. 622-629, out 2016 BARUAH, M. et al. Noncatheter-related bacteraemia due to Chryseobacterium indologenes in an immunocompetent patient. Indian J Med Microbiol, v. 34, n. 3, p. 380-381, 2016. BECEIRO, A.; TOMÁS, M.; BOU, G. Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World?. Clinical Microbiology Reviews, v. 26, n. 2, p. 185-230, abr 2013. BELLAIS, S. et al. Molecular characterization of a carbapenem-hydrolyzing β-lactamase from Chryseobacterium (Flavobacterium) indologenes. FEMS Microbiology Letters, v. 171, n. 2, p. 127–132, 1999. BELLAIS, S. et al. Genetic Diversity of Carbapenem-Hydrolyzing Metallo-b-Lactamases from Chryseobacterium (Flavobacterium) indologenes. Antimicrobial Agents and Chemotherapy, v. 44, n. 11, p. 3028–3034, nov 2000. BEREZIN, E. N.; SOLÓRZANO, F. Gram-negative infections in pediatric and neonatal intensive care units of Latin America. Journal of Infection in Developing Countries, v. 8, n. 8, p. 942–53, 2014. BHUYAR, G. et al. Urinary tract infection by Chryseobacterium indologenes. Indian Journal of Medical Microbiology, v. 30, n. 3, p. 370-372, 2012. BOCHENNEK et al. Infectious complications in children with acute myeloid leukemia: decreased mortality in multicenter trial AML-BFM 2004. Blood Cancer Journal, v. 6, jan 2016. BRADFORD, P. A. Extended-Spectrum Beta-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clinical Microbiology Reviews, v. 14, n. 4, p. 922-951, out 2001. BUSH, K.; BRADFORD, P. A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb Perspect Med, v. 6, n. 8, ago 2016. BUSH, K. Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-negative infections. Critical Care (London, England), v. 14, n. 3, 2010. CALDERÓN, G. et al. Chryseobacterium indologenes infection in a newborn: a case report. Journal of Medical Case Reports, v. 5, 2011. CANTÓN, R.; GONZÁLEZ-ALBA, J. M.; GALÁN, J. C. CTX-M enzymes: origin and diffusion. Frontiers in microbiology, v. 3, abr 2012. CARASSO, E. et al. Draft Genome Sequences of Two Multidrug-Resistant Extended Spectrum--Lactamase-Producing Klebsiella pneumoniae Strains Causing Bloodstream Infections. Genome Announcements, v. 4, n. 1, jan/fev 2016. 63 CHANG, Y.-C. et al. Identification, epidemiological relatedness, and biofilm formation of clinical Chryseobacterium indologenes isolates from central Taiwan. Journal of Microbiology, Immunology and Infection, n. 48, p. 559-654, mai 2015. CHEN, F.-L. et al. Clinical and epidemiological features of Chryseobacterium indologenes infections: Analysis of 215 case. Journal of Microbiology, Immunology and Infection, v. 46, n. 6, p. 425-432, dez 2013. CHOW, J. W.; SHLAES, D. M. Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. J Antimicrob Chemother, v. 28, n. 4, p. 499-504, out 1991. CHRISTAKIS, G. B. et al. Chryseobacterium indologenes Non-Catheter-Related Bacteremia in a Patient with a Solid Tumor. Journal of Clinical Microbiology, v. 43, n. 4, p. 2021–2023, abr 2005. COLLELLO, R. et al. Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC). Braz. J. Microbiol., v. 46, n. 1, jan-mar 2015. COTRIM, E. R.; ROCHA, R. D. R.; FERREIRA, M. F. R. Klebsiella pneumoniae carbapenemase – KPC em Enterobacteriaceae: o desafio das bactérias multirresistentes. Pós em revista do Centro Universitário Newton Paiva. 5ª ed., 2012. CUSHNIE, T. P.; O'DRISCOLL, N.H.; LAMB, A. J. Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell Mol Life Sci., v. 73 n. 23, p. 4471-4492, dez 2016. DHILLON. R. H.-P.; CLARK, J. ESBLs: A Clear and Present Danger? Critical Care Research and Practice, 2012. DOUVOYIANNIS, M. et al. Chryseobacterium indologenes bacteremia in an infant. International Journal of Infectious Diseases, v. 14, n. 6, p. 531-532, jun 2010. DROPA, M. et al. Complex class 1 integrons harboring CTX-M-2-encoding genes in clinical Enterobacteriaceae from a hospital in Brazil. J Infect Dev Ctries, v. 9, n. 8, p.890-897, 2015. EHLERS, M. M. et al. Detection of blaSHV, blaTEM and blaCTX-M antibiotic resistance genes in randomly selected bacterial pathogens from the Steve Biko Academic Hospital. FEMS Immunol Med Microbiol, v. 56, p. 191–196, 2009. FAIRMAN, J. W.; NOINAJ, N.; BUCHANAN, S. K. The structural biology of β-barrel membrane proteins: a summary of recent report. Curr Opin Struct Biol., v. 21, n. 4, p. 523-531, ago 2011. FERREIRA, C. M. et al. Novel methicillin-resistant coagulase-negative Staphylococcus clone isolated from patients with haematological diseases at the blood bank centre of Amazon, Brazil. Memorias Do Instituto Oswaldo Cruz, v. 108, n. 2, p. 233–238, 2011. FLEMING, A. On the Antibacterial Action of Cultures of a Penicillium, with Special 64 Reference to Their Use in the Isolation of B. influenzae. British Journal of Experimental Pathology. v. 10, p 226-236, 1929. FLORES-KIM, J.; DARWIN, A. J. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence, v. 5, n. 8, p. 835—851, nov/dez 2014. GALES, A. C. et al. Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008-2010) Diagn Microbiol Infect Dis, v. 73, n. 4, p. 354-360, ago 2012. GIAOURIS, E. et al. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol, v. 6, n. 841, 2015. GIRMENIA, C.; SERRAO, A.; CANICHELLA, M. Epidemiology of Carbapenem Resistant Klebsiella pneumoniae Infections in Mediterranean Countries. Mediterr J Hematol Infect Dis, n. 8 jul 2016. GUILHEN, C. FORESTIER, C. BALESTRINO, D. Biofilm dispersal: Multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol., abr 2017. GUIMARÃES, D. O.; MOMESSO. L. S.; PUPO, M. T. Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Quim. Nova, v. 33, n. 3, p. 667-679, fev 2010. GUTMANN, I. et al. SHV-5, a Novel SHV-Type r-Lactamase That Hydrolyzes BroadSpectrum Cephalosporins and Monobactams. Antimicrobial Agents And Chemotherapy, v. 33, n. 6, p. 951-956, jun 1989. HAN, S.-T. et al. Establishment of a Simple and Quick Method for Detecting Extended-Spectrum b-Lactamase (ESBL) Genes in Bacteria. Journal of Biomolecular Techniques, v. 27, p. 132–137, 2016. HØIBY, N. A short history of microbial biofilms and biofilm infections. APMIS, v. 125, n.4, p. 272-275, abr 2017. HUDDLESTON, J. R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infection and Drug Resistance, v. 7, p. 167–76, 2014. HSUEH, P.-O. et al. Flavobacterium indologenes Bacteremia: Clinical and Microbiological Characteristics. Clin Infect Dis, v. 23, n. 3, p. 550-555, set 1996. HSUEH, P.-O. et al. Susceptibilities of Chryseobacterium indologenes and Chryseobacterium meningosepticum to Cefepime and Cefpirome. Journal of clinical microbiology, v. 35, n. 12, p. 3323-3324, dez 1997. IMATAKI, O.; UEMURA, M. Chryseobacterium indologenes, a possible emergent organism resistant to carbapenem antimicrobials after stem cell transplantation. Clinical Case Reports, v. 5, n. 1, p. 22-25, jan 2017. JOOSTE, P.J.; Hugo, C. J. The taxonomy, ecology and cultivation of bacterial genera belonging to the family Flavobacteriaceae. International Journal of Food 65 Microbiology, v. 53, p. 81-94, out 1999. KIDD, T. J. et al. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Molecular Medicine, v. 9, n. 4, fev 2017. KIM, E. S.; HOOPER, D. C. Clinical importance and epidemiology of quinolone resistance. Infect Chemother, v. 46, n. 4, p. 226–238, dez 2014. KING, D. T.; SOBHANIFAR, S.; STRYNADKA, N. C. J. One ring to rule them all: Current trends in combating bacterial resistance to the b-lactams. Protein Science, v. 25, p. 787-803, jan 2016. KNOTHE, H. et al. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection, v. 11, n. 6, p. 315-317, 1983. LEE, C-R. et al. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Frontiers in Microbiology, v. 7, jun 2016. LEE, C-R. et al. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front Cell Infect Microbiol, v. 7, mar 2017. LEE, K. et al. Novel Acquired Metallo-β-Lactamase Gene, blaSIM-1, in a Class 1 Integron from Acinetobacter baumannii Clinical Isolates from Korea. Antimicrobial agentes and chemotherapy, v. 49, n. 11, p. 4485–4491, nov. 2005. LESKI, T. A. et al. High prevalence of multidrug resistant Enterobacteriaceae isolated from outpatient urine samples but not the hospital environment in Bo, Sierra Leone. BMC Infectious Diseases, v. 16, n. 167, 2016. LIAKOPOULOS, A.; MEVIUS, D.; CECCARELLI, D. A Review of SHV Extended-Spectrumb-Lactamases: Neglected Yet Ubiquitous. Frontiers in Microbiology, v. 7, set 2016. LIU, Y.; BREUKINK, E. The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets. Antibiotics (Basel), v. 5, n.3, set 2016. LYU, Z. X.; ZHAO, X. S. Periplasmic quality control in biogenesis of outer membrane proteins. Biochem. Soc. Trans., v. 43, p., 133–138, 2015. MAAROUFI, H. E. et al. Risk Factors and Scoring System for Predicting Bacterial Resistance to Cefepime as Used Empirically in Haematology Wards. BioMed Research International, 2015. MACK, W. N.; MACK, J. P. ACKERSON, A. O. Microbial film development in a trickling filter. Microb Ecol., v. 2, n. 3, p. 215-226, set 1975. MCKEW, G. Severe Sepsis Due to Chryseobacterium indologenes in an Immunocompetent Adventure Traveler. Journal of Clinical Microbiology, v. 52, n. 66 11, p. 4100-4101, nov 2014. MALDONADO, R. F; SÁ-CORREIA, I.; VALVANO, M. A. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiology Reviews, v. 40, p. 480–493, abr 2016. MARTINEZ, J. L.; BAQUERO, F. Mutation frequencies and antibiotic resistance. Antimicrobial agents and chemotherapy., v. 44, n. 7, p. 1771-1777. MATSUMOTO, T. et al. Characterization of CIA-1, an Ambler class A extended-spectrum β-lactamase from Chryseobacterium indologenes. Antimicrobial Agents and Chemotherapy, v. 56, n.1, p. 588–590, 2012. MILLION-WEAVER, S.; CAMPS, M. Mechanisms of plasmid segregation: have multicopy plasmids been overlooked? Plasmid. set 2014. MAY, K. L. et al. Lipopolysaccharide transport to the cell surface: periplasmic transport and assembly into the outer membrane. Philos Trans R Soc Lond B Biol Sci, v. 5, out 2015. MAY, K. L.; SILHAVY, T. J. Making a membrane on the other side of the wall. Biochim Biophys Acta., out 2016. MCMURRY, L.; PETRUCCI JUNIOR, R. E.; LEVY, S. B. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci, v. 77, n. 7, p. 3974-3977, jul 1980. MULLANY, P.; ALLAN, E.; ROBERTS, A. P. Mobile genetic elements in Clostridium difficile and their role in genome function. Res Microbiol., v. 166, n. 4, p. 361-367, mai 2015. MULVEY, M. R. et al. Ambler Class A Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella spp. in Canadian Hospitals. Antimicrobial Agents And Chemotherapy, v. 48, n. 4, p. 1204–1214, abr 2004. MULVEY, M. R.; SIMOR, A. E. Antimicrobial resistance in hospitals: How concerned should we be?. CMAJ, v. 180, n. 4, fev 2009. MUTCALI, S. I. et al. Recurrent port infection due to Chryseobacterium indologenes. The Eurasian Journal of Medicine, v. 45, n. 1, p. 60–61, 2013. NDIR, A. et al. Epidemiology and Burden of Bloodstream Infections Caused by Extended-Spectrum Beta-Lactamase Producing Enterobacteriaceae in a Pediatric Hospital in Senegal. Plos One, v. 11, n. 2, fev 2016. NIKAIDO, H. Multidrug Resistance in Bacteria. Annu Rev Biochem, 2009. NOGUEIRA, K. S. et al. Distribution of extended-spectrum β-lactamase types in a Brazilian tertiary hospital. Revista da Sociedade Brasileira de Medicina Tropical, v. 48, n. 2, p. 162-169, mar/abr 2015. NORDMANN, P.; POIREL, L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clinical Microbiology and 67 Infection, v. 20, n. 9, set 2014. OGARAWA, H. Self-resistance in Streptomyces, with Special Reference to β-Lactam Antibiotics. Molecules, v. 21, n. 5, 2016. OHNISHI, M. et al. Genetic Characteristics of CTX-M-Type Extended-Spectrum-β-Lactamase (ESBL)-Producing Enterobacteriaceae Involved in Mastitis Cases on Japanese Dairy Farms, 2007 to 2011. Journal of Clinical Microbiology, v. 51, n. 9, p. 3117–3122, set 2013. OMAR, A. et al. Chryseobacterium indologenes in a woman with acute leukemia in Senegal: a case report. Journal of Medical Case Reports, v. 8, 2014. OZCAN, N. et al. Is Chryseobacterium indologenes a shunt-lover bacterium? A case report and review of the literature. Le Infezioni in Medicina, n. 4, p. 312-316, 2013. PAPP-WALLACE, K. M. et al. Carbapenems: Past, Present, and Future. Antimicrobial agents and chemotherapy, p. 4943–4960, nov 2011. PATERSON, D. L.; BONOMO, R. A. Extended-Spectrum β-Lactamases: a Clinical Update. Clinical microbiology reviews, v. 18, n. 4, p. 657-686, out 2005. PERILLI, M. et al. Identification and Characterization of a New Metallo-β-Lactamase, IND-5, from a Clinical Isolate of Chryseobacterium indologenes. Antimicrobial Agents And Chemotherapy, v. 51, n. 8, p. 2988–2990, ago 2007. PITOUT, J. D. D.; NORDMANN, P.; POIREL, L. Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrobial Agents and Chemotherapy, v. 59, n. 10, out 2015. POIREL, L.; NAAS, T.; NORDMANN, P. Diversity, Epidemiology, and Genetics of Class D Beta-Lactamases. Antimicrobial agents and chemotherapy, p. 24–38, jan 2010. PRAGASAM, A. K. A Pilot Study on Carbapenemase Detection: Do We See the Same Level of Agreement as with the CLSI Observations. Journal of Clinical and Diagnostic Research, v. 10, n. 7, jul 2016. RAO, S. P. N. Extended spectrum beta-lactamase. Jun 2012. Disponível em: www.microrao.com.br. RUBIO, F. G. et al. Trends in bacterial resistance in a tertiary university hospital over one decade. Braz J Infect Dis, v. 17, n. 4, p. 480-482, jul/ago 2013. RUGINI, C. L.; SOBOTTKA, A. M.; FUENTEFRIA, D. B. Occurrence and sensitivity profile of extended spectrum beta-lactamase-producing Enterobacteriaceae at a tertiary hospital in Southern Brazil. Revista da Sociedade Brasileira de Medicina Tropical, v. 48, n. 6, p. 692-698, nov/dez 2015. SANTIN, G. C. et al. Antimicrobial photodynamic therapy and dental plaque: a systematic review of the literature. The Scientific World Journal, 2014. 68 SAITOU, N.; NEI, M. The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol., v. 4, n. 4, p. 406-425, 1987. SEEMA, Y. et al. Chryseobacterium indologenes in a woman with metastatic breast cancer in the United States of America: a case report. Journal of Medical Case Reports, v. 7, n. 190, 2013. SEKYERE, J. O. Resistance to Last-Resort Antibiotics in South Africa: A Review from a Public Health Perspective. Frontiers in Public Health, v. 4, set 2016. SERRATI, S. et al. Next-generation sequencing: advances and applications in cancer diagnosis. OncoTargets and Therapy, v. 9, p. 7355–7365, 2016. SHAHRAKI-ZAHEDANI, S. et al. First report of TEM-104-, SHV-99-, SHV-108-, and SHV-110- producing Klebsiella pneumoniae from Iran. Rev Soc Bras Med Trop, v. 49, n. 4, p. 441-445, jul-ago 2016. SHAHUL, H. A. Chryseobacterium indologenes pneumonia in a patient with non-Hodgkin’s lymphoma. BMJ Case Rep, 2014. SHINTANI, M.; SANCHEZ, Z. K.; KIMBARA, K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Frontiers in Microbiology, v. 6, mar 2015. SILVA, K. C.; LINCOPAN, N. Epidemiologia das betalactamases de espectro estendido no Brasil: impacto clínico e implicações para o agronegócio. J. Bras. Patol. Med. Lab., v.c48 n.c2, abr 2012. SILVA, G. J. da; DOMINGUES, S. Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii. Microorganisms. v. 4, N. 29, 2016. SOUGAKOFF, W.; GOUSSARD, S.; COURVALIN, P. The TEM-3 β-lactamase, which hydrolyzes broad-spectrum cephalosporins, is derived from the TEM-2 penicillinase by two amino acid substitutions. FEMS Microbiology Letters., v. 56, n. 3, p. 343-348, dez 1988. SOUSA JUNIOR, M. A.; FERREIRA, E. S. CONCEIÇÃO, G. C. Betalactamases de Espectro Ampliado (ESBL): um Importante Mecanismo de Resistência Bacteriana e sua Detecção no Laboratório Clínico. NewsLab, v. 63, 2004. SRINIVASAN, G. et al. Unforeseeable presentation of Chryseobacterium indologenes infection in a paediatric patient. BMC Res Notes, v. 9, abr 2016. STRANDBERG, E.; ULRICH, A. S. AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? Biochim Biophys Acta., v. 1848, n. 9, p. 1944-1954, set 2015. TEKE, T. A. et al. Chryseobacterium indologenes septicemia in an Infant. Case Reports in Infectious Diseases, 2014. 69 TEMKIN, E. et al. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann. N.Y. Acad. Sci. v. 1323, p. 22–42, 2014. TINELLI, M., et al. Epidemiology and genetic characteristics of extended-spectrum β-lactamase-producing Gram-negative bacteria causing urinary tract infections in long-term care facilities. J Antimicrob Chemother, v. 67, p. 2982–2987, ago 2012. TOWNSEND, C. A. Convergent biosynthetic pathways to β-lactam antibiotics. Curr Opin Chem Biol., v. 35, p. 97-108, dez 2016. TRENTIN, D. S.; GIORDANI, R. G.; MACEDO, A. J. Biofilmes bacterianos patogênicos: aspectos gerais, importância clínica e estratégias de combate. Revista Liberato, v. 14, n. 22, p. 113-238, jul./dez. 2013. VANEGAS, J.M.; PARRA, O. L.; JMÉNEZ, J. N. Molecular epidemiology of carbapenem resistant Gram-negative bacilli from infected pediatric population in tertiary care hospitals in Medellín, Colombia: an increasing problem. BMC Infectious Diseases, v. 16, n. 463, set 2016. VANDAMME, P. et al. New Perspectives in the Classification of the Flavobacteria: Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter norn. rev. International Journal Of Systematic Bacteriology, v. 44, n. 4, p. 847-831, out 1994. ZAPUN, A.; MORLOT, C.; TAHA, M. K. Resistance to β-Lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-Binding Proteins. Antibiotics (Basel)., v. 5, n. 4, set 2016. ZEBA, B. et al. IND-6, a Highly Divergent IND-Type Metallo-β-Lactamase from Chryseobacterium indologenes Strain 597 Isolated in Burkina Faso. Antimicrob Agents Chemother. v. 53, n. 10, p. 4320-4326, out 2009. ZHOU, P.; ZHAO, J. Structure, inhibition, and regulation of essential lipid A enzymes. Biochim Biophys Acta., dez 2016. ZHOU, K. et al. Characteriztion of a CTX-M-15 producing Klebsiella pnemoniae outbreak strain assigned to a novel sequence type (1427). Frontiers in microbiology, v. 6, nov 2015. YAMAGUCHI, Y. Structure of metallo-b-lactamase IND-7 from a Chryseobacterium indologenes clinical isolate at 1.65-A° resolution. J. Biochem. v. 147, n. 6, p. 905–915, 2010. YOTSUJI, A. et al. Properties of Novel 3-Lactamase Produced by Bacteroides fragilis. Antimicrobial Agents and Chemotherapy, v. 24, n. 6, p. 925-929, dez 1983. WANG, L. et al. Prevalence of Resistant Gram-Negative Bacilli in Bloodstream Infection in Febrile Neutropenia Patients Undergoing Hematopoietic Stem Cell Transplantation: A Single Center Retrospective Cohort Study. Medicine, v. 94, n. 45, nov 2015. WANG, T. et al. Whole genome sequencing uncovers a novel IND-16 70 metallo-β-lactamase from an extensively drug-resistant Chryseobacterium indologenes strain J31. Gut Pathog, v.8, n. 47, 2016. WANG, Y. G. et al. Chryseobacterium indologenes peritomitis in a patient with malignant ascites. Int Med Case Rep J, v.4, p. 13-15, jan 2011. WHILEY, D. et al. Penicillinase-Producing Plasmid Types in Neisseria gonorrhoeae Clinical Isolates from Australia. Antimicrobial Agents and Chemotherapy, v. 58, n. 12, p. 7576 –7578, dez 2014.Atribuição-NãoComercial-SemDerivados 3.0 Brasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade do Estado do Amazonas (UEA)instname:Universidade do Estado do Amazonas (UEA)instacron:UEA2020-03-12T14:18:21Zoai:repositorioinstitucional:riuea/2242Repositório InstitucionalPUBhttp://repositorioinstitucional.uea.edu.br/oai/resquestbibliotecacentral@uea.edu.bropendoar:2023-12-11T16:50:38.327176Repositório Institucional da Universidade do Estado do Amazonas (UEA) - Universidade do Estado do Amazonas (UEA)true
dc.title.none.fl_str_mv Caracterização molecular de genes de resistência às βlactamases em isolados de chryseobacterium indologenes
Molecular characterization of βlactamases resistance genes in chryseobacterium indologenes isolates
title Caracterização molecular de genes de resistência às βlactamases em isolados de chryseobacterium indologenes
spellingShingle Caracterização molecular de genes de resistência às βlactamases em isolados de chryseobacterium indologenes
Freitas, Ellen Albuquerque de
Mutação
ESBL
Carbapenemases
Chryseobacterium indologenes
Multirresistência
Hematologia
title_short Caracterização molecular de genes de resistência às βlactamases em isolados de chryseobacterium indologenes
title_full Caracterização molecular de genes de resistência às βlactamases em isolados de chryseobacterium indologenes
title_fullStr Caracterização molecular de genes de resistência às βlactamases em isolados de chryseobacterium indologenes
title_full_unstemmed Caracterização molecular de genes de resistência às βlactamases em isolados de chryseobacterium indologenes
title_sort Caracterização molecular de genes de resistência às βlactamases em isolados de chryseobacterium indologenes
author Freitas, Ellen Albuquerque de
author_facet Freitas, Ellen Albuquerque de
author_role author
dc.contributor.none.fl_str_mv Ferreira, William Antunes
http://lattes.cnpq.br/9487847737983248
Ferreira, Cristina Motta
http://lattes.cnpq.br/7283507436511006
Ferreira, Cristina Motta
http://lattes.cnpq.br/7283507436511006
Pontes, Gemilson Soares
http://lattes.cnpq.br/9081671233815990
Moura Neto, José Pereira de
http://lattes.cnpq.br/6749773067557179
dc.contributor.author.fl_str_mv Freitas, Ellen Albuquerque de
dc.subject.por.fl_str_mv Mutação
ESBL
Carbapenemases
Chryseobacterium indologenes
Multirresistência
Hematologia
topic Mutação
ESBL
Carbapenemases
Chryseobacterium indologenes
Multirresistência
Hematologia
description Chryseobacterium indologenes is a ubiquitous bacterium related to several types of infections, presenting a multiresistant profile, independent of the isolate clinical sample, reducing the therapeutic options. The aim of this study was to characterize molecularly the resistance genes of β-lactamases in isolates of Chryseobacterium indologenes. This was a descriptive study, in which two multiresistant species of Chryseobacterium indologenes were studied, from the blood culture of two female hospitalized patients, aged over 60 years. Chromosomal and plasmid DNA were extracted and polymerase chain reactions (PCR) were performed to detect ESBL resistance genes (blaTEM, blaSHV, blaAmpC, blaCTX-M groups 1, 2, 8 and 9), carbapenemases (blaGES, blaKPC, blaIMI, blaOXA and blaOXA-48 like) and metallo-β-lactamases, (blaNDM, blaVIM, blaIMP, blaIND-like and blaIND-2). The PCR products were sequenced and later analyzed in the Geneious software program. The blaIND-like gene was detected with similarity to the IND-3 and 8 alleles. In relation to the IND-3 allele, it had a mutation at position 119 (ALA → SER). The phylogenetic tree showed that the BGN 23 isolate presented 100% similarity in relation to the common ancestor and 12% similarity difference in relation to the nearest descendant group, whereas the isolate P133 presented only a 9% difference in relation to its group. As for the common ancestor, the isolate P133 is quite distant, possibly indicating that it has more genetic differences in relation to it. This study detected a mutation at position 119 of the IND-3 allele, not yet described in the literature, which may mean possible changes in the susceptibility profile of the bacterium. The IND-8 allele showed 100% similarity to those already described and inserted in the public Genbank database. In relation to phylogeny, it can be observed that C. indologenes presents as a new lineage inserted along the lineage with Asian and European profile, presenting genetic characteristics in relation to its common ancestor. Molecular studies on bacterial resistance mechanisms of multiresistant species should be continued, as they will aid in future research for the discovery of new drugs, new genetic and/or intrinsic resistance mechanisms, or even the identification of new bacterial molecular targets, in order that the usefulness of the antibiotic therapy can be restored or the introduction of a new antibiotic therapy necessary to treat the infectious diseases caused by them and to avoid the spread of pathogenic clones.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-26
2020-03-12
2020-03-12T14:18:21Z
2020-03-12T14:18:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorioinstitucional.uea.edu.br//handle/riuea/2242
url http://repositorioinstitucional.uea.edu.br//handle/riuea/2242
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv ABREU, A. G. et al. Extended-spectrum β-lactamase-producing Enterobacteriaceae in community-acquired urinary tract infections in São Luís, Brazil. Brazilian Journal of Microbiology, n. 44, v. 2, p. 469-471, 2013. AFSHAR, M.; NOBAKHT, E.; LEW, S. Q. Chryseobacterium indologenes peritonitis in peritoneal dialysis. BMJ Case Reports, 2013. AFZALI, H. et al. Characterization of CTX-M-Type Extend-Spectrum β-Lactamase Producing Klebsiella spp. in Kashan, Iran. Jundishapur J Microbiol, v. 8, n. 10, out 2015. AHMED, S. H. et al. Nosocomial blood stream infection in intensive care units at Assiut University Hospitals (Upper Egypt) with special reference to extended spectrum b-lactamase producing organisms. BMC Research Notes, v. 2, n. 76, mai 2009. AKAY, M.; GUNDUZ, E.; GULBAS, Z. Catheter-related bacteremia due to Chryseobacterium indologenes in a bone marrow transplant recipient. Bone Marrow Transplantation, v. 37, p. 435-436, 2006. ALYAMANI, E. J. et al. The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia. Ann Clin Microbiol Antimicrob, v. 16, n.1, 2017 AL-ZAROUNI, M. et al. Prevalence and Antimicrobial Susceptibility Pattern of Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in the United Arab Emirates. Med Princ Pract, n. 17, p. 32–36, 2008. ANES, J. et al. The ins and outs of RND efflux pumps in Escherichia coli. Frontiers in Microbiology, v. 6, 2015. ARIZA, A. et al. Hypersensitivity Reactions to ß-Lactams: Relevance of Hapten-Protein Conjugates. J Investig Allergol Clin Immunol, v. 25, n. 1, p. 12-25, 2015. ATICI, S. et al. Ventilator-associated pneumonia caused by Chryseobacterium indologenes: a rare infant case and review of the literature. SpringerPlus, v. 5, out 2016. AZEVEDO, S. M. M. Farmacologia dos antibióticos beta-lactâmicos. 2014. 70 p. Dissertação (Mestrado Integrado em Ciências Farmacêuticas). Faculdade de Ciências da Saúde. Universidade Fernando Pessoa, Porto, 2014. BAKTHAVATCHALAM, Y. D.; ANANDAN, S.; VEERARAGHAVAN, D. Laboratory Detection and Clinical Implication of Oxacillinase-48 like Carbapenemase: The Hidden Threat. J Glob Infect Dis. V. 8, n.1, p. 41-50, jan-mar 2016. BALJIN, B. et al. Faecal Carriage of Gram-Negative MultidrugResistant Bacteria among Patients Hospitalized in Two Centres in Ulaanbaatar, Mongolia. Plos One, dez 2016. BANERJEE, T. et al. Long-term outbreak of Klebsiella pneumoniae e third generation 62 cephalosporin use in a neonatal intensive care unit in north India. Indian J Med Res, v. 144, n. 4, p. 622-629, out 2016 BARUAH, M. et al. Noncatheter-related bacteraemia due to Chryseobacterium indologenes in an immunocompetent patient. Indian J Med Microbiol, v. 34, n. 3, p. 380-381, 2016. BECEIRO, A.; TOMÁS, M.; BOU, G. Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World?. Clinical Microbiology Reviews, v. 26, n. 2, p. 185-230, abr 2013. BELLAIS, S. et al. Molecular characterization of a carbapenem-hydrolyzing β-lactamase from Chryseobacterium (Flavobacterium) indologenes. FEMS Microbiology Letters, v. 171, n. 2, p. 127–132, 1999. BELLAIS, S. et al. Genetic Diversity of Carbapenem-Hydrolyzing Metallo-b-Lactamases from Chryseobacterium (Flavobacterium) indologenes. Antimicrobial Agents and Chemotherapy, v. 44, n. 11, p. 3028–3034, nov 2000. BEREZIN, E. N.; SOLÓRZANO, F. Gram-negative infections in pediatric and neonatal intensive care units of Latin America. Journal of Infection in Developing Countries, v. 8, n. 8, p. 942–53, 2014. BHUYAR, G. et al. Urinary tract infection by Chryseobacterium indologenes. Indian Journal of Medical Microbiology, v. 30, n. 3, p. 370-372, 2012. BOCHENNEK et al. Infectious complications in children with acute myeloid leukemia: decreased mortality in multicenter trial AML-BFM 2004. Blood Cancer Journal, v. 6, jan 2016. BRADFORD, P. A. Extended-Spectrum Beta-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clinical Microbiology Reviews, v. 14, n. 4, p. 922-951, out 2001. BUSH, K.; BRADFORD, P. A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb Perspect Med, v. 6, n. 8, ago 2016. BUSH, K. Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-negative infections. Critical Care (London, England), v. 14, n. 3, 2010. CALDERÓN, G. et al. Chryseobacterium indologenes infection in a newborn: a case report. Journal of Medical Case Reports, v. 5, 2011. CANTÓN, R.; GONZÁLEZ-ALBA, J. M.; GALÁN, J. C. CTX-M enzymes: origin and diffusion. Frontiers in microbiology, v. 3, abr 2012. CARASSO, E. et al. Draft Genome Sequences of Two Multidrug-Resistant Extended Spectrum--Lactamase-Producing Klebsiella pneumoniae Strains Causing Bloodstream Infections. Genome Announcements, v. 4, n. 1, jan/fev 2016. 63 CHANG, Y.-C. et al. Identification, epidemiological relatedness, and biofilm formation of clinical Chryseobacterium indologenes isolates from central Taiwan. Journal of Microbiology, Immunology and Infection, n. 48, p. 559-654, mai 2015. CHEN, F.-L. et al. Clinical and epidemiological features of Chryseobacterium indologenes infections: Analysis of 215 case. Journal of Microbiology, Immunology and Infection, v. 46, n. 6, p. 425-432, dez 2013. CHOW, J. W.; SHLAES, D. M. Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. J Antimicrob Chemother, v. 28, n. 4, p. 499-504, out 1991. CHRISTAKIS, G. B. et al. Chryseobacterium indologenes Non-Catheter-Related Bacteremia in a Patient with a Solid Tumor. Journal of Clinical Microbiology, v. 43, n. 4, p. 2021–2023, abr 2005. COLLELLO, R. et al. Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC). Braz. J. Microbiol., v. 46, n. 1, jan-mar 2015. COTRIM, E. R.; ROCHA, R. D. R.; FERREIRA, M. F. R. Klebsiella pneumoniae carbapenemase – KPC em Enterobacteriaceae: o desafio das bactérias multirresistentes. Pós em revista do Centro Universitário Newton Paiva. 5ª ed., 2012. CUSHNIE, T. P.; O'DRISCOLL, N.H.; LAMB, A. J. Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell Mol Life Sci., v. 73 n. 23, p. 4471-4492, dez 2016. DHILLON. R. H.-P.; CLARK, J. ESBLs: A Clear and Present Danger? Critical Care Research and Practice, 2012. DOUVOYIANNIS, M. et al. Chryseobacterium indologenes bacteremia in an infant. International Journal of Infectious Diseases, v. 14, n. 6, p. 531-532, jun 2010. DROPA, M. et al. Complex class 1 integrons harboring CTX-M-2-encoding genes in clinical Enterobacteriaceae from a hospital in Brazil. J Infect Dev Ctries, v. 9, n. 8, p.890-897, 2015. EHLERS, M. M. et al. Detection of blaSHV, blaTEM and blaCTX-M antibiotic resistance genes in randomly selected bacterial pathogens from the Steve Biko Academic Hospital. FEMS Immunol Med Microbiol, v. 56, p. 191–196, 2009. FAIRMAN, J. W.; NOINAJ, N.; BUCHANAN, S. K. The structural biology of β-barrel membrane proteins: a summary of recent report. Curr Opin Struct Biol., v. 21, n. 4, p. 523-531, ago 2011. FERREIRA, C. M. et al. Novel methicillin-resistant coagulase-negative Staphylococcus clone isolated from patients with haematological diseases at the blood bank centre of Amazon, Brazil. Memorias Do Instituto Oswaldo Cruz, v. 108, n. 2, p. 233–238, 2011. FLEMING, A. On the Antibacterial Action of Cultures of a Penicillium, with Special 64 Reference to Their Use in the Isolation of B. influenzae. British Journal of Experimental Pathology. v. 10, p 226-236, 1929. FLORES-KIM, J.; DARWIN, A. J. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence, v. 5, n. 8, p. 835—851, nov/dez 2014. GALES, A. C. et al. Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008-2010) Diagn Microbiol Infect Dis, v. 73, n. 4, p. 354-360, ago 2012. GIAOURIS, E. et al. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol, v. 6, n. 841, 2015. GIRMENIA, C.; SERRAO, A.; CANICHELLA, M. Epidemiology of Carbapenem Resistant Klebsiella pneumoniae Infections in Mediterranean Countries. Mediterr J Hematol Infect Dis, n. 8 jul 2016. GUILHEN, C. FORESTIER, C. BALESTRINO, D. Biofilm dispersal: Multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol., abr 2017. GUIMARÃES, D. O.; MOMESSO. L. S.; PUPO, M. T. Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Quim. Nova, v. 33, n. 3, p. 667-679, fev 2010. GUTMANN, I. et al. SHV-5, a Novel SHV-Type r-Lactamase That Hydrolyzes BroadSpectrum Cephalosporins and Monobactams. Antimicrobial Agents And Chemotherapy, v. 33, n. 6, p. 951-956, jun 1989. HAN, S.-T. et al. Establishment of a Simple and Quick Method for Detecting Extended-Spectrum b-Lactamase (ESBL) Genes in Bacteria. Journal of Biomolecular Techniques, v. 27, p. 132–137, 2016. HØIBY, N. A short history of microbial biofilms and biofilm infections. APMIS, v. 125, n.4, p. 272-275, abr 2017. HUDDLESTON, J. R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infection and Drug Resistance, v. 7, p. 167–76, 2014. HSUEH, P.-O. et al. Flavobacterium indologenes Bacteremia: Clinical and Microbiological Characteristics. Clin Infect Dis, v. 23, n. 3, p. 550-555, set 1996. HSUEH, P.-O. et al. Susceptibilities of Chryseobacterium indologenes and Chryseobacterium meningosepticum to Cefepime and Cefpirome. Journal of clinical microbiology, v. 35, n. 12, p. 3323-3324, dez 1997. IMATAKI, O.; UEMURA, M. Chryseobacterium indologenes, a possible emergent organism resistant to carbapenem antimicrobials after stem cell transplantation. Clinical Case Reports, v. 5, n. 1, p. 22-25, jan 2017. JOOSTE, P.J.; Hugo, C. J. The taxonomy, ecology and cultivation of bacterial genera belonging to the family Flavobacteriaceae. International Journal of Food 65 Microbiology, v. 53, p. 81-94, out 1999. KIDD, T. J. et al. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Molecular Medicine, v. 9, n. 4, fev 2017. KIM, E. S.; HOOPER, D. C. Clinical importance and epidemiology of quinolone resistance. Infect Chemother, v. 46, n. 4, p. 226–238, dez 2014. KING, D. T.; SOBHANIFAR, S.; STRYNADKA, N. C. J. One ring to rule them all: Current trends in combating bacterial resistance to the b-lactams. Protein Science, v. 25, p. 787-803, jan 2016. KNOTHE, H. et al. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection, v. 11, n. 6, p. 315-317, 1983. LEE, C-R. et al. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Frontiers in Microbiology, v. 7, jun 2016. LEE, C-R. et al. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front Cell Infect Microbiol, v. 7, mar 2017. LEE, K. et al. Novel Acquired Metallo-β-Lactamase Gene, blaSIM-1, in a Class 1 Integron from Acinetobacter baumannii Clinical Isolates from Korea. Antimicrobial agentes and chemotherapy, v. 49, n. 11, p. 4485–4491, nov. 2005. LESKI, T. A. et al. High prevalence of multidrug resistant Enterobacteriaceae isolated from outpatient urine samples but not the hospital environment in Bo, Sierra Leone. BMC Infectious Diseases, v. 16, n. 167, 2016. LIAKOPOULOS, A.; MEVIUS, D.; CECCARELLI, D. A Review of SHV Extended-Spectrumb-Lactamases: Neglected Yet Ubiquitous. Frontiers in Microbiology, v. 7, set 2016. LIU, Y.; BREUKINK, E. The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets. Antibiotics (Basel), v. 5, n.3, set 2016. LYU, Z. X.; ZHAO, X. S. Periplasmic quality control in biogenesis of outer membrane proteins. Biochem. Soc. Trans., v. 43, p., 133–138, 2015. MAAROUFI, H. E. et al. Risk Factors and Scoring System for Predicting Bacterial Resistance to Cefepime as Used Empirically in Haematology Wards. BioMed Research International, 2015. MACK, W. N.; MACK, J. P. ACKERSON, A. O. Microbial film development in a trickling filter. Microb Ecol., v. 2, n. 3, p. 215-226, set 1975. MCKEW, G. Severe Sepsis Due to Chryseobacterium indologenes in an Immunocompetent Adventure Traveler. Journal of Clinical Microbiology, v. 52, n. 66 11, p. 4100-4101, nov 2014. MALDONADO, R. F; SÁ-CORREIA, I.; VALVANO, M. A. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiology Reviews, v. 40, p. 480–493, abr 2016. MARTINEZ, J. L.; BAQUERO, F. Mutation frequencies and antibiotic resistance. Antimicrobial agents and chemotherapy., v. 44, n. 7, p. 1771-1777. MATSUMOTO, T. et al. Characterization of CIA-1, an Ambler class A extended-spectrum β-lactamase from Chryseobacterium indologenes. Antimicrobial Agents and Chemotherapy, v. 56, n.1, p. 588–590, 2012. MILLION-WEAVER, S.; CAMPS, M. Mechanisms of plasmid segregation: have multicopy plasmids been overlooked? Plasmid. set 2014. MAY, K. L. et al. Lipopolysaccharide transport to the cell surface: periplasmic transport and assembly into the outer membrane. Philos Trans R Soc Lond B Biol Sci, v. 5, out 2015. MAY, K. L.; SILHAVY, T. J. Making a membrane on the other side of the wall. Biochim Biophys Acta., out 2016. MCMURRY, L.; PETRUCCI JUNIOR, R. E.; LEVY, S. B. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci, v. 77, n. 7, p. 3974-3977, jul 1980. MULLANY, P.; ALLAN, E.; ROBERTS, A. P. Mobile genetic elements in Clostridium difficile and their role in genome function. Res Microbiol., v. 166, n. 4, p. 361-367, mai 2015. MULVEY, M. R. et al. Ambler Class A Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella spp. in Canadian Hospitals. Antimicrobial Agents And Chemotherapy, v. 48, n. 4, p. 1204–1214, abr 2004. MULVEY, M. R.; SIMOR, A. E. Antimicrobial resistance in hospitals: How concerned should we be?. CMAJ, v. 180, n. 4, fev 2009. MUTCALI, S. I. et al. Recurrent port infection due to Chryseobacterium indologenes. The Eurasian Journal of Medicine, v. 45, n. 1, p. 60–61, 2013. NDIR, A. et al. Epidemiology and Burden of Bloodstream Infections Caused by Extended-Spectrum Beta-Lactamase Producing Enterobacteriaceae in a Pediatric Hospital in Senegal. Plos One, v. 11, n. 2, fev 2016. NIKAIDO, H. Multidrug Resistance in Bacteria. Annu Rev Biochem, 2009. NOGUEIRA, K. S. et al. Distribution of extended-spectrum β-lactamase types in a Brazilian tertiary hospital. Revista da Sociedade Brasileira de Medicina Tropical, v. 48, n. 2, p. 162-169, mar/abr 2015. NORDMANN, P.; POIREL, L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clinical Microbiology and 67 Infection, v. 20, n. 9, set 2014. OGARAWA, H. Self-resistance in Streptomyces, with Special Reference to β-Lactam Antibiotics. Molecules, v. 21, n. 5, 2016. OHNISHI, M. et al. Genetic Characteristics of CTX-M-Type Extended-Spectrum-β-Lactamase (ESBL)-Producing Enterobacteriaceae Involved in Mastitis Cases on Japanese Dairy Farms, 2007 to 2011. Journal of Clinical Microbiology, v. 51, n. 9, p. 3117–3122, set 2013. OMAR, A. et al. Chryseobacterium indologenes in a woman with acute leukemia in Senegal: a case report. Journal of Medical Case Reports, v. 8, 2014. OZCAN, N. et al. Is Chryseobacterium indologenes a shunt-lover bacterium? A case report and review of the literature. Le Infezioni in Medicina, n. 4, p. 312-316, 2013. PAPP-WALLACE, K. M. et al. Carbapenems: Past, Present, and Future. Antimicrobial agents and chemotherapy, p. 4943–4960, nov 2011. PATERSON, D. L.; BONOMO, R. A. Extended-Spectrum β-Lactamases: a Clinical Update. Clinical microbiology reviews, v. 18, n. 4, p. 657-686, out 2005. PERILLI, M. et al. Identification and Characterization of a New Metallo-β-Lactamase, IND-5, from a Clinical Isolate of Chryseobacterium indologenes. Antimicrobial Agents And Chemotherapy, v. 51, n. 8, p. 2988–2990, ago 2007. PITOUT, J. D. D.; NORDMANN, P.; POIREL, L. Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrobial Agents and Chemotherapy, v. 59, n. 10, out 2015. POIREL, L.; NAAS, T.; NORDMANN, P. Diversity, Epidemiology, and Genetics of Class D Beta-Lactamases. Antimicrobial agents and chemotherapy, p. 24–38, jan 2010. PRAGASAM, A. K. A Pilot Study on Carbapenemase Detection: Do We See the Same Level of Agreement as with the CLSI Observations. Journal of Clinical and Diagnostic Research, v. 10, n. 7, jul 2016. RAO, S. P. N. Extended spectrum beta-lactamase. Jun 2012. Disponível em: www.microrao.com.br. RUBIO, F. G. et al. Trends in bacterial resistance in a tertiary university hospital over one decade. Braz J Infect Dis, v. 17, n. 4, p. 480-482, jul/ago 2013. RUGINI, C. L.; SOBOTTKA, A. M.; FUENTEFRIA, D. B. Occurrence and sensitivity profile of extended spectrum beta-lactamase-producing Enterobacteriaceae at a tertiary hospital in Southern Brazil. Revista da Sociedade Brasileira de Medicina Tropical, v. 48, n. 6, p. 692-698, nov/dez 2015. SANTIN, G. C. et al. Antimicrobial photodynamic therapy and dental plaque: a systematic review of the literature. The Scientific World Journal, 2014. 68 SAITOU, N.; NEI, M. The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol., v. 4, n. 4, p. 406-425, 1987. SEEMA, Y. et al. Chryseobacterium indologenes in a woman with metastatic breast cancer in the United States of America: a case report. Journal of Medical Case Reports, v. 7, n. 190, 2013. SEKYERE, J. O. Resistance to Last-Resort Antibiotics in South Africa: A Review from a Public Health Perspective. Frontiers in Public Health, v. 4, set 2016. SERRATI, S. et al. Next-generation sequencing: advances and applications in cancer diagnosis. OncoTargets and Therapy, v. 9, p. 7355–7365, 2016. SHAHRAKI-ZAHEDANI, S. et al. First report of TEM-104-, SHV-99-, SHV-108-, and SHV-110- producing Klebsiella pneumoniae from Iran. Rev Soc Bras Med Trop, v. 49, n. 4, p. 441-445, jul-ago 2016. SHAHUL, H. A. Chryseobacterium indologenes pneumonia in a patient with non-Hodgkin’s lymphoma. BMJ Case Rep, 2014. SHINTANI, M.; SANCHEZ, Z. K.; KIMBARA, K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Frontiers in Microbiology, v. 6, mar 2015. SILVA, K. C.; LINCOPAN, N. Epidemiologia das betalactamases de espectro estendido no Brasil: impacto clínico e implicações para o agronegócio. J. Bras. Patol. Med. Lab., v.c48 n.c2, abr 2012. SILVA, G. J. da; DOMINGUES, S. Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii. Microorganisms. v. 4, N. 29, 2016. SOUGAKOFF, W.; GOUSSARD, S.; COURVALIN, P. The TEM-3 β-lactamase, which hydrolyzes broad-spectrum cephalosporins, is derived from the TEM-2 penicillinase by two amino acid substitutions. FEMS Microbiology Letters., v. 56, n. 3, p. 343-348, dez 1988. SOUSA JUNIOR, M. A.; FERREIRA, E. S. CONCEIÇÃO, G. C. Betalactamases de Espectro Ampliado (ESBL): um Importante Mecanismo de Resistência Bacteriana e sua Detecção no Laboratório Clínico. NewsLab, v. 63, 2004. SRINIVASAN, G. et al. Unforeseeable presentation of Chryseobacterium indologenes infection in a paediatric patient. BMC Res Notes, v. 9, abr 2016. STRANDBERG, E.; ULRICH, A. S. AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? Biochim Biophys Acta., v. 1848, n. 9, p. 1944-1954, set 2015. TEKE, T. A. et al. Chryseobacterium indologenes septicemia in an Infant. Case Reports in Infectious Diseases, 2014. 69 TEMKIN, E. et al. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann. N.Y. Acad. Sci. v. 1323, p. 22–42, 2014. TINELLI, M., et al. Epidemiology and genetic characteristics of extended-spectrum β-lactamase-producing Gram-negative bacteria causing urinary tract infections in long-term care facilities. J Antimicrob Chemother, v. 67, p. 2982–2987, ago 2012. TOWNSEND, C. A. Convergent biosynthetic pathways to β-lactam antibiotics. Curr Opin Chem Biol., v. 35, p. 97-108, dez 2016. TRENTIN, D. S.; GIORDANI, R. G.; MACEDO, A. J. Biofilmes bacterianos patogênicos: aspectos gerais, importância clínica e estratégias de combate. Revista Liberato, v. 14, n. 22, p. 113-238, jul./dez. 2013. VANEGAS, J.M.; PARRA, O. L.; JMÉNEZ, J. N. Molecular epidemiology of carbapenem resistant Gram-negative bacilli from infected pediatric population in tertiary care hospitals in Medellín, Colombia: an increasing problem. BMC Infectious Diseases, v. 16, n. 463, set 2016. VANDAMME, P. et al. New Perspectives in the Classification of the Flavobacteria: Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter norn. rev. International Journal Of Systematic Bacteriology, v. 44, n. 4, p. 847-831, out 1994. ZAPUN, A.; MORLOT, C.; TAHA, M. K. Resistance to β-Lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-Binding Proteins. Antibiotics (Basel)., v. 5, n. 4, set 2016. ZEBA, B. et al. IND-6, a Highly Divergent IND-Type Metallo-β-Lactamase from Chryseobacterium indologenes Strain 597 Isolated in Burkina Faso. Antimicrob Agents Chemother. v. 53, n. 10, p. 4320-4326, out 2009. ZHOU, P.; ZHAO, J. Structure, inhibition, and regulation of essential lipid A enzymes. Biochim Biophys Acta., dez 2016. ZHOU, K. et al. Characteriztion of a CTX-M-15 producing Klebsiella pnemoniae outbreak strain assigned to a novel sequence type (1427). Frontiers in microbiology, v. 6, nov 2015. YAMAGUCHI, Y. Structure of metallo-b-lactamase IND-7 from a Chryseobacterium indologenes clinical isolate at 1.65-A° resolution. J. Biochem. v. 147, n. 6, p. 905–915, 2010. YOTSUJI, A. et al. Properties of Novel 3-Lactamase Produced by Bacteroides fragilis. Antimicrobial Agents and Chemotherapy, v. 24, n. 6, p. 925-929, dez 1983. WANG, L. et al. Prevalence of Resistant Gram-Negative Bacilli in Bloodstream Infection in Febrile Neutropenia Patients Undergoing Hematopoietic Stem Cell Transplantation: A Single Center Retrospective Cohort Study. Medicine, v. 94, n. 45, nov 2015. WANG, T. et al. Whole genome sequencing uncovers a novel IND-16 70 metallo-β-lactamase from an extensively drug-resistant Chryseobacterium indologenes strain J31. Gut Pathog, v.8, n. 47, 2016. WANG, Y. G. et al. Chryseobacterium indologenes peritomitis in a patient with malignant ascites. Int Med Case Rep J, v.4, p. 13-15, jan 2011. WHILEY, D. et al. Penicillinase-Producing Plasmid Types in Neisseria gonorrhoeae Clinical Isolates from Australia. Antimicrobial Agents and Chemotherapy, v. 58, n. 12, p. 7576 –7578, dez 2014.
dc.rights.driver.fl_str_mv Atribuição-NãoComercial-SemDerivados 3.0 Brasil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribuição-NãoComercial-SemDerivados 3.0 Brasil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Estado do Amazonas
Brasil
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS Á HEMATOLOGIA
UEA
publisher.none.fl_str_mv Universidade do Estado do Amazonas
Brasil
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS Á HEMATOLOGIA
UEA
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade do Estado do Amazonas (UEA)
instname:Universidade do Estado do Amazonas (UEA)
instacron:UEA
instname_str Universidade do Estado do Amazonas (UEA)
instacron_str UEA
institution UEA
reponame_str Repositório Institucional da Universidade do Estado do Amazonas (UEA)
collection Repositório Institucional da Universidade do Estado do Amazonas (UEA)
repository.name.fl_str_mv Repositório Institucional da Universidade do Estado do Amazonas (UEA) - Universidade do Estado do Amazonas (UEA)
repository.mail.fl_str_mv bibliotecacentral@uea.edu.br
_version_ 1792203845589270528