EQUAÇÕES QUADRÁTICAS: UMA NOVA FÓRMULA RESOLUTIVA COM UMA PROPOSTA DIDÁTICA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Boletim Cearense de Educação e História da Matemática (Online) |
Texto Completo: | https://revistas.uece.br/index.php/BOCEHM/article/view/3559 |
Resumo: | Sabemos que a maioria dos tópicos matemáticos ensinados na escola são esquecidos pelos alunos, mas nem tudo. Por exemplo, todo aluno do ensino médio recorda que estudou equações do 2º grau, pois quando é interrogado lembra dizendo: “Usa aquela fórmula do delta” outros dizem: “Aplica a fórmula de Bhaskara.” Na verdade, essa fórmula está arraigada à mente de alunos e ex-alunos porque todo professor ensina tais equações usando a fórmula de Bhaskara, e, além disso, a maioria pensa que é o único método para resolver as equações quadráticas completas. Contrariando esse pensamento, o objetivo deste artigo é apresentar uma nova fórmula resolutiva e também uma proposta didática adequada à mesma. Esta nasceu há duas décadas e costumo chamá-la de Proposta histórico-didática, visto que resulta da história das equações combinada com uma conjectura didática. Nesse contexto acadêmico, creio que vale dizer que a conjectura eu a formulei e defendi (1995) numa dissertação de Mestrado em Educação Matemática na UNESP, enquanto a nova fórmula foi uma simples redescoberta (2000) quando eu analisava os vários métodos de resoluções de equações quadráticas e cúbicas usados por Pacioli, Tartaglia e Cardano, matemáticos do século XVI. Por outro lado, a referida proposta didática foi lentamente elaborada, na medida em que eu reconhecia os obstáculos epistemológicos tratados na conjectura. Finalmente, ela consolidou-se em 2003 no trabalho de conclusão de curso (TCC) de um aluno de Graduação em Matemática da Universidade estadual Vale do Acaraú - UVA. Três anos depois ela foi aplicada em sala de aula. É que a proposta foi transformada em monografia de Especialização em Didática da Matemática pelo Centro Universitário Inta - UNINTA, cuja pesquisa consistiu em comparar a aprendizagem dos alunos na resolução de equações quadráticas com duas fórmulas diferentes, mas ensinadas pelo mesmo professor. Os resultados didáticos mostraram que a nova fórmula é mais fácil de ser usada pelo aluno. |
id |
UECE-4_d04d456d5a8773c3da30a601054fbd58 |
---|---|
oai_identifier_str |
oai:ojs.revistas.uece.br:article/3559 |
network_acronym_str |
UECE-4 |
network_name_str |
Boletim Cearense de Educação e História da Matemática (Online) |
repository_id_str |
|
spelling |
EQUAÇÕES QUADRÁTICAS: UMA NOVA FÓRMULA RESOLUTIVA COM UMA PROPOSTA DIDÁTICAEnsinoHistória da MatemáticaEquações quadráticasSabemos que a maioria dos tópicos matemáticos ensinados na escola são esquecidos pelos alunos, mas nem tudo. Por exemplo, todo aluno do ensino médio recorda que estudou equações do 2º grau, pois quando é interrogado lembra dizendo: “Usa aquela fórmula do delta” outros dizem: “Aplica a fórmula de Bhaskara.” Na verdade, essa fórmula está arraigada à mente de alunos e ex-alunos porque todo professor ensina tais equações usando a fórmula de Bhaskara, e, além disso, a maioria pensa que é o único método para resolver as equações quadráticas completas. Contrariando esse pensamento, o objetivo deste artigo é apresentar uma nova fórmula resolutiva e também uma proposta didática adequada à mesma. Esta nasceu há duas décadas e costumo chamá-la de Proposta histórico-didática, visto que resulta da história das equações combinada com uma conjectura didática. Nesse contexto acadêmico, creio que vale dizer que a conjectura eu a formulei e defendi (1995) numa dissertação de Mestrado em Educação Matemática na UNESP, enquanto a nova fórmula foi uma simples redescoberta (2000) quando eu analisava os vários métodos de resoluções de equações quadráticas e cúbicas usados por Pacioli, Tartaglia e Cardano, matemáticos do século XVI. Por outro lado, a referida proposta didática foi lentamente elaborada, na medida em que eu reconhecia os obstáculos epistemológicos tratados na conjectura. Finalmente, ela consolidou-se em 2003 no trabalho de conclusão de curso (TCC) de um aluno de Graduação em Matemática da Universidade estadual Vale do Acaraú - UVA. Três anos depois ela foi aplicada em sala de aula. É que a proposta foi transformada em monografia de Especialização em Didática da Matemática pelo Centro Universitário Inta - UNINTA, cuja pesquisa consistiu em comparar a aprendizagem dos alunos na resolução de equações quadráticas com duas fórmulas diferentes, mas ensinadas pelo mesmo professor. Os resultados didáticos mostraram que a nova fórmula é mais fácil de ser usada pelo aluno.EdUECE2021-06-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.uece.br/index.php/BOCEHM/article/view/355910.30938/bocehm.v7i20.3559Boletim Cearense de Educação e História da Matemática; v. 7 n. 20 (2020): Número Especial - IV Seminário Cearense de História da Matemática; 459-4642447-85042357-8661reponame:Boletim Cearense de Educação e História da Matemática (Online)instname:Universidade Estadual do Ceará (UECE)instacron:UECEporhttps://revistas.uece.br/index.php/BOCEHM/article/view/3559/3053Copyright (c) 2020 Boletim Cearense de Educação e História da Matemáticainfo:eu-repo/semantics/openAccessBonnet, Fabius2021-06-05T16:03:55Zoai:ojs.revistas.uece.br:article/3559Revistahttps://revistas.uece.br/index.php/BOCEHM/indexPUBhttps://revistas.uece.br/index.php/BOCEHM/oaigpehm@uece.br2447-85042357-8661opendoar:2023-01-12T15:16:44.670620Boletim Cearense de Educação e História da Matemática (Online) - Universidade Estadual do Ceará (UECE)true |
dc.title.none.fl_str_mv |
EQUAÇÕES QUADRÁTICAS: UMA NOVA FÓRMULA RESOLUTIVA COM UMA PROPOSTA DIDÁTICA |
title |
EQUAÇÕES QUADRÁTICAS: UMA NOVA FÓRMULA RESOLUTIVA COM UMA PROPOSTA DIDÁTICA |
spellingShingle |
EQUAÇÕES QUADRÁTICAS: UMA NOVA FÓRMULA RESOLUTIVA COM UMA PROPOSTA DIDÁTICA Bonnet, Fabius Ensino História da Matemática Equações quadráticas |
title_short |
EQUAÇÕES QUADRÁTICAS: UMA NOVA FÓRMULA RESOLUTIVA COM UMA PROPOSTA DIDÁTICA |
title_full |
EQUAÇÕES QUADRÁTICAS: UMA NOVA FÓRMULA RESOLUTIVA COM UMA PROPOSTA DIDÁTICA |
title_fullStr |
EQUAÇÕES QUADRÁTICAS: UMA NOVA FÓRMULA RESOLUTIVA COM UMA PROPOSTA DIDÁTICA |
title_full_unstemmed |
EQUAÇÕES QUADRÁTICAS: UMA NOVA FÓRMULA RESOLUTIVA COM UMA PROPOSTA DIDÁTICA |
title_sort |
EQUAÇÕES QUADRÁTICAS: UMA NOVA FÓRMULA RESOLUTIVA COM UMA PROPOSTA DIDÁTICA |
author |
Bonnet, Fabius |
author_facet |
Bonnet, Fabius |
author_role |
author |
dc.contributor.author.fl_str_mv |
Bonnet, Fabius |
dc.subject.por.fl_str_mv |
Ensino História da Matemática Equações quadráticas |
topic |
Ensino História da Matemática Equações quadráticas |
description |
Sabemos que a maioria dos tópicos matemáticos ensinados na escola são esquecidos pelos alunos, mas nem tudo. Por exemplo, todo aluno do ensino médio recorda que estudou equações do 2º grau, pois quando é interrogado lembra dizendo: “Usa aquela fórmula do delta” outros dizem: “Aplica a fórmula de Bhaskara.” Na verdade, essa fórmula está arraigada à mente de alunos e ex-alunos porque todo professor ensina tais equações usando a fórmula de Bhaskara, e, além disso, a maioria pensa que é o único método para resolver as equações quadráticas completas. Contrariando esse pensamento, o objetivo deste artigo é apresentar uma nova fórmula resolutiva e também uma proposta didática adequada à mesma. Esta nasceu há duas décadas e costumo chamá-la de Proposta histórico-didática, visto que resulta da história das equações combinada com uma conjectura didática. Nesse contexto acadêmico, creio que vale dizer que a conjectura eu a formulei e defendi (1995) numa dissertação de Mestrado em Educação Matemática na UNESP, enquanto a nova fórmula foi uma simples redescoberta (2000) quando eu analisava os vários métodos de resoluções de equações quadráticas e cúbicas usados por Pacioli, Tartaglia e Cardano, matemáticos do século XVI. Por outro lado, a referida proposta didática foi lentamente elaborada, na medida em que eu reconhecia os obstáculos epistemológicos tratados na conjectura. Finalmente, ela consolidou-se em 2003 no trabalho de conclusão de curso (TCC) de um aluno de Graduação em Matemática da Universidade estadual Vale do Acaraú - UVA. Três anos depois ela foi aplicada em sala de aula. É que a proposta foi transformada em monografia de Especialização em Didática da Matemática pelo Centro Universitário Inta - UNINTA, cuja pesquisa consistiu em comparar a aprendizagem dos alunos na resolução de equações quadráticas com duas fórmulas diferentes, mas ensinadas pelo mesmo professor. Os resultados didáticos mostraram que a nova fórmula é mais fácil de ser usada pelo aluno. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-05 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.uece.br/index.php/BOCEHM/article/view/3559 10.30938/bocehm.v7i20.3559 |
url |
https://revistas.uece.br/index.php/BOCEHM/article/view/3559 |
identifier_str_mv |
10.30938/bocehm.v7i20.3559 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.uece.br/index.php/BOCEHM/article/view/3559/3053 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Boletim Cearense de Educação e História da Matemática info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Boletim Cearense de Educação e História da Matemática |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
EdUECE |
publisher.none.fl_str_mv |
EdUECE |
dc.source.none.fl_str_mv |
Boletim Cearense de Educação e História da Matemática; v. 7 n. 20 (2020): Número Especial - IV Seminário Cearense de História da Matemática; 459-464 2447-8504 2357-8661 reponame:Boletim Cearense de Educação e História da Matemática (Online) instname:Universidade Estadual do Ceará (UECE) instacron:UECE |
instname_str |
Universidade Estadual do Ceará (UECE) |
instacron_str |
UECE |
institution |
UECE |
reponame_str |
Boletim Cearense de Educação e História da Matemática (Online) |
collection |
Boletim Cearense de Educação e História da Matemática (Online) |
repository.name.fl_str_mv |
Boletim Cearense de Educação e História da Matemática (Online) - Universidade Estadual do Ceará (UECE) |
repository.mail.fl_str_mv |
gpehm@uece.br |
_version_ |
1797053997997096960 |