Números irracionais: duas atividades envolvendo o pentagrama
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Boletim Cearense de Educação e História da Matemática (Online) |
Texto Completo: | https://revistas.uece.br/index.php/BOCEHM/article/view/4683 |
Resumo: | Este trabalho é fruto de pesquisas desenvolvidas no âmbito do Grupo de Estudos em História da Matemática e Educação Matemática (GHMEM) da Universidade Estadual de Maringá (UEM). Dentre os estudos realizados nesse grupo, tem-se aqueles relacionados à história da matemática voltada ao ensino. Nesse sentido, entende-se que a participação da história da matemática na ação pedagógica é um recurso que pode contribuir com o processo de ensino e aprendizagem de matemática. Dentro desse contexto, e relacionando com o conteúdo de números irracionais, tem-se que o objetivo neste artigo é apresentar uma proposta, para professores, com atividades que envolvem características dos números irracionais a partir de informações relacionadas à incomensurabilidade e aspectos históricos do surgimento desses números. O foco neste texto é evidenciar um modo de abordar os números irracionais, o qual compreende explorar algumas propriedades do Pentagrama – símbolo da escola pitagórica. Para tal, são apresentadas duas atividades indicadas para alunos do 1º ano do Ensino Médio, em que a primeira tem como intuito estabelecer relações entre a incomensurabilidade e um número irracional, a partir de investigações vinculadas aos segmentos relacionados ao Pentagrama, e a segunda atividade, por sua vez, tem o propósito de propiciar que os alunos encontrem um número irracional (sua representação decimal e fracionária) e investiguem suas características, também a partir de investigações no Pentagrama. Assim, espera-se que as atividades propostas possam colaborar com o estabelecimento de relações entre conteúdos geralmente trabalhados individualmente (incomensurabilidade – Grandezas e Medidas; números irracionais – Números), além de possibilitar reflexões sobre aspectos históricos relacionados à temática deste texto. |
id |
UECE-4_ddceccf7ccf0e0920c82dba754f0a411 |
---|---|
oai_identifier_str |
oai:ojs.revistas.uece.br:article/4683 |
network_acronym_str |
UECE-4 |
network_name_str |
Boletim Cearense de Educação e História da Matemática (Online) |
repository_id_str |
|
spelling |
Números irracionais: duas atividades envolvendo o pentagramaHistória no ensino de matemáticaPentagramaNúmeros irracionaisEste trabalho é fruto de pesquisas desenvolvidas no âmbito do Grupo de Estudos em História da Matemática e Educação Matemática (GHMEM) da Universidade Estadual de Maringá (UEM). Dentre os estudos realizados nesse grupo, tem-se aqueles relacionados à história da matemática voltada ao ensino. Nesse sentido, entende-se que a participação da história da matemática na ação pedagógica é um recurso que pode contribuir com o processo de ensino e aprendizagem de matemática. Dentro desse contexto, e relacionando com o conteúdo de números irracionais, tem-se que o objetivo neste artigo é apresentar uma proposta, para professores, com atividades que envolvem características dos números irracionais a partir de informações relacionadas à incomensurabilidade e aspectos históricos do surgimento desses números. O foco neste texto é evidenciar um modo de abordar os números irracionais, o qual compreende explorar algumas propriedades do Pentagrama – símbolo da escola pitagórica. Para tal, são apresentadas duas atividades indicadas para alunos do 1º ano do Ensino Médio, em que a primeira tem como intuito estabelecer relações entre a incomensurabilidade e um número irracional, a partir de investigações vinculadas aos segmentos relacionados ao Pentagrama, e a segunda atividade, por sua vez, tem o propósito de propiciar que os alunos encontrem um número irracional (sua representação decimal e fracionária) e investiguem suas características, também a partir de investigações no Pentagrama. Assim, espera-se que as atividades propostas possam colaborar com o estabelecimento de relações entre conteúdos geralmente trabalhados individualmente (incomensurabilidade – Grandezas e Medidas; números irracionais – Números), além de possibilitar reflexões sobre aspectos históricos relacionados à temática deste texto.EdUECE2021-07-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado pelos paresapplication/pdfhttps://revistas.uece.br/index.php/BOCEHM/article/view/468310.30938/bocehm.v8i24.4683Boletim Cearense de Educação e História da Matemática; v. 8 n. 24 (2021): BOCEHM (Fluxo Contínuo) - Set/Dez; 32-462447-85042357-8661reponame:Boletim Cearense de Educação e História da Matemática (Online)instname:Universidade Estadual do Ceará (UECE)instacron:UECEporhttps://revistas.uece.br/index.php/BOCEHM/article/view/4683/4703Copyright (c) 2021 Boletim Cearense de Educação e História da Matemáticainfo:eu-repo/semantics/openAccessBarboza, Ana Caroline FrigériBergamim, Érica Gambarotto JardimTrivizoli, Lucieli Maria2021-07-08T19:14:13Zoai:ojs.revistas.uece.br:article/4683Revistahttps://revistas.uece.br/index.php/BOCEHM/indexPUBhttps://revistas.uece.br/index.php/BOCEHM/oaigpehm@uece.br2447-85042357-8661opendoar:2023-01-12T15:16:45.352969Boletim Cearense de Educação e História da Matemática (Online) - Universidade Estadual do Ceará (UECE)true |
dc.title.none.fl_str_mv |
Números irracionais: duas atividades envolvendo o pentagrama |
title |
Números irracionais: duas atividades envolvendo o pentagrama |
spellingShingle |
Números irracionais: duas atividades envolvendo o pentagrama Barboza, Ana Caroline Frigéri História no ensino de matemática Pentagrama Números irracionais |
title_short |
Números irracionais: duas atividades envolvendo o pentagrama |
title_full |
Números irracionais: duas atividades envolvendo o pentagrama |
title_fullStr |
Números irracionais: duas atividades envolvendo o pentagrama |
title_full_unstemmed |
Números irracionais: duas atividades envolvendo o pentagrama |
title_sort |
Números irracionais: duas atividades envolvendo o pentagrama |
author |
Barboza, Ana Caroline Frigéri |
author_facet |
Barboza, Ana Caroline Frigéri Bergamim, Érica Gambarotto Jardim Trivizoli, Lucieli Maria |
author_role |
author |
author2 |
Bergamim, Érica Gambarotto Jardim Trivizoli, Lucieli Maria |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Barboza, Ana Caroline Frigéri Bergamim, Érica Gambarotto Jardim Trivizoli, Lucieli Maria |
dc.subject.por.fl_str_mv |
História no ensino de matemática Pentagrama Números irracionais |
topic |
História no ensino de matemática Pentagrama Números irracionais |
description |
Este trabalho é fruto de pesquisas desenvolvidas no âmbito do Grupo de Estudos em História da Matemática e Educação Matemática (GHMEM) da Universidade Estadual de Maringá (UEM). Dentre os estudos realizados nesse grupo, tem-se aqueles relacionados à história da matemática voltada ao ensino. Nesse sentido, entende-se que a participação da história da matemática na ação pedagógica é um recurso que pode contribuir com o processo de ensino e aprendizagem de matemática. Dentro desse contexto, e relacionando com o conteúdo de números irracionais, tem-se que o objetivo neste artigo é apresentar uma proposta, para professores, com atividades que envolvem características dos números irracionais a partir de informações relacionadas à incomensurabilidade e aspectos históricos do surgimento desses números. O foco neste texto é evidenciar um modo de abordar os números irracionais, o qual compreende explorar algumas propriedades do Pentagrama – símbolo da escola pitagórica. Para tal, são apresentadas duas atividades indicadas para alunos do 1º ano do Ensino Médio, em que a primeira tem como intuito estabelecer relações entre a incomensurabilidade e um número irracional, a partir de investigações vinculadas aos segmentos relacionados ao Pentagrama, e a segunda atividade, por sua vez, tem o propósito de propiciar que os alunos encontrem um número irracional (sua representação decimal e fracionária) e investiguem suas características, também a partir de investigações no Pentagrama. Assim, espera-se que as atividades propostas possam colaborar com o estabelecimento de relações entre conteúdos geralmente trabalhados individualmente (incomensurabilidade – Grandezas e Medidas; números irracionais – Números), além de possibilitar reflexões sobre aspectos históricos relacionados à temática deste texto. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-08 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Avaliado pelos pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.uece.br/index.php/BOCEHM/article/view/4683 10.30938/bocehm.v8i24.4683 |
url |
https://revistas.uece.br/index.php/BOCEHM/article/view/4683 |
identifier_str_mv |
10.30938/bocehm.v8i24.4683 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.uece.br/index.php/BOCEHM/article/view/4683/4703 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Boletim Cearense de Educação e História da Matemática info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Boletim Cearense de Educação e História da Matemática |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
EdUECE |
publisher.none.fl_str_mv |
EdUECE |
dc.source.none.fl_str_mv |
Boletim Cearense de Educação e História da Matemática; v. 8 n. 24 (2021): BOCEHM (Fluxo Contínuo) - Set/Dez; 32-46 2447-8504 2357-8661 reponame:Boletim Cearense de Educação e História da Matemática (Online) instname:Universidade Estadual do Ceará (UECE) instacron:UECE |
instname_str |
Universidade Estadual do Ceará (UECE) |
instacron_str |
UECE |
institution |
UECE |
reponame_str |
Boletim Cearense de Educação e História da Matemática (Online) |
collection |
Boletim Cearense de Educação e História da Matemática (Online) |
repository.name.fl_str_mv |
Boletim Cearense de Educação e História da Matemática (Online) - Universidade Estadual do Ceará (UECE) |
repository.mail.fl_str_mv |
gpehm@uece.br |
_version_ |
1797053998025408512 |